Citation: Xiao-Jun Zhao, Zhi-Hua Cui, Ren-Liang Wang, Xin Li, Su-Ju Fan, Wei-Guo Chen. Synthesis of an electron-rich aniline-containing dye and its dyeing behaviors on silk through a three-component Mannich-type reaction[J]. Chinese Chemical Letters, ;2015, 26(2): 259-262. doi: 10.1016/j.cclet.2014.11.002 shu

Synthesis of an electron-rich aniline-containing dye and its dyeing behaviors on silk through a three-component Mannich-type reaction

  • Corresponding author: Zhi-Hua Cui, 
  • Received Date: 21 July 2014
    Available Online: 21 October 2014

    Fund Project: Zhejiang Provincial Top Key Academic Discipline of Chemical Engineering and Technology, and "521" Talent Project of Zhejiang Sci-Tech University. (No. 2010R50038)

  • Under the guidance of the finding that the tyrosine residues in proteins could undergo three-component Mannich-type reactions with formaldehyde and electron-rich aniline-containing compounds, which forms covalent bonding connections between the protein of interest and the aniline with high levels of selectivity under relatively mild conditions, an orange aromatic primary amine-containing acid dye AMODB was designed and readily synthesized. The molecular structure was characterized by FTIR, 1H NMR, mass spectrometry and elemental analysis. The synthesized dye and a similar control dye (C.I. Acid Yellow 11) without primary amine groups were applied to dye silk fabric by three dyeing processes: Mannich-type dyeing (with and without the addition of formaldehyde) and acidic dyeing. Their washing and rubbing fastness properties with different dyeing methods were examined and compared. It was found that the dyed silk fabric with AMODB by the Mannich-type dyeing showed higher color depth, better anti-stripping ability to DMF and better washing fastness than those of the dyed silk fabric with C.I. Acid Yellow 11 by acidic dyeing due to the covalent bond formation between the dye chromophore of AMODB and silk fiber. In addition, mild Mannich dyeing conditions suitable for silk (AMODB at 3% owf, 75:1 liquor-to-goods ratio, dyebath pH 5.5, 30 8C, 10 h) were provided.
  • 加载中
    1. [1]

      [1] C. Solazzo, J.M. Dyer, S. Deb-Choudhury, Proteomic profiling of the photo-oxidation of silk fibroin: implications for historic tin-weighted silk, Photochem. Photobiol. 88 (2012) 1217-1226.

    2. [2]

      [2] J. Shao, J. Liu, J. Zheng, C.M. Carr, X-ray photoelectron spectroscopic study of silk fibroin surface, Polym. Int. 51 (2002) 1479-1483.

    3. [3]

      [3] Z. Cai, Fiber Chemistry and Physics, China Textile & Apparel Press, Beijing, 2004.

    4. [4]

      [4] G. Mitra, S.K. Bhattacharya, P.K. Mazumdar, A review on chemical processing of silk, Colourage 56 (2009) 48-50, 52.

    5. [5]

      [5] S. Shakra, S. Shakra, E.E. Allam, H.F. Mansour, Dyeing natural silk fabrics-part I: direct dyes, Am. Dyest. Rep. 88 (1999) 29-32.

    6. [6]

      [6] J. He, Dye Chemistry, China Textile & Apparel Press, Beijing, 2009.

    7. [7]

      [7] M. Inoue, F. Okada, A. Sakurai, M. Sakakibara, A new development of dyestuffs degradation system using ultrasound, Ultrason. Sonochem. 13 (2006) 313-320.

    8. [8]

      [8] S.K. Kansal, M. Singh, D. Sud, Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts, J. Hazard. Mater. 141 (2007) 581-590.

    9. [9]

      [9] S. Vanhulle, E. Enand, M. Trovaslet, Overlap of laccases/cellobiose dehydrogenase activities during the decolourization of anthraquinonic dyes with close chemical structures by Pycnoporus strains, Enzym. Microb. Technol. 40 (2007) 1723-1731.

    10. [10]

      [10] J.H. Zheng, J.Z. Shao, J.Q. Liu, Study on the distribution of tyrosine in silk fibroin, J. Text. Res. 22 (2001) 7-9.

    11. [11]

      [11] H.M. Zhou, H.R. Wang, Chemical Modification of Protein, Qinghua University, Beijing, 1998.

    12. [12]

      [12] W. Chen, Z. Wang, Z. Cui, et al., Study on coloration of silk based on coupling reaction with a diazonium compound, Fibers Polym. 15 (2014) 966-970.

    13. [13]

      [13] J. Gavrilyuk, H. Ban, M. Nagano, W. Hakamata, C.F. Barbas, Formylbenzene diazonium hexafluorophosphate reagent for tyrosine-selective modification of proteins and the introduction of a bioorthogonal aldehyde, Bioconj. Chem. 23 (2012) 2321-2328.

    14. [14]

      [14] J.M. Hooker, E.W. Kovacs, M.B. Francis, Interior surface modification of bacteriophage MS2, J. Am. Chem. Soc. 126 (2004) 3718-3719.

    15. [15]

      [15] T.L. Schlick, Z. Ding, E.W. Kovacs, M.B. Francis, Dual-surface modification of the tobacco mosaic virus, J. Am. Chem. Soc. 127 (2005) 3718-3723.

    16. [16]

      [16] N.S. Joshi, L.R. Whitaker, M.B. Francis, A three-component Mannich-type reaction for selective tyrosine bioconjugation, J. Am. Chem. Soc. 126 (2004) 15942-15943.

    17. [17]

      [17] D.W. Romanini, M.B. Francis, Attachment of peptide building blocks to proteins through tyrosine bioconjugation, Bioconj. Chem. 19 (2008) 153-157.

    18. [18]

      [18] J.M. McFarland, N.S. Joshi, M.B. Francis, Characterization of a three-component coupling reaction on proteins by isotopic labeling and nuclear magnetic resonance spectroscopy, J. Am. Chem. Soc. 130 (2008) 7639-7644.

    19. [19]

      [19] J. Yang, Analysis and Anatomy of Dyes, Chemical Industry Press, Beijing, 1989.

    20. [20]

      [20] K. Hunger, Industrial Dyes: Chemistry, Properties, Applications, Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim, 2003.

  • 加载中
    1. [1]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    2. [2]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    3. [3]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    4. [4]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    5. [5]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    6. [6]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    7. [7]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    8. [8]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    9. [9]

      Xiao-Fang LvXiao-Yun RanYu ZhaoRui-Rui ZhangLi-Na ZhangJing ShiJi-Xuan XuQing-Quan KongXiao-Qi YuKun Li . Combing NIR-Ⅱ molecular dye with magnetic nanoparticles for enhanced photothermal theranostics with a 95.6% photothermal conversion efficiency. Chinese Chemical Letters, 2025, 36(4): 110027-. doi: 10.1016/j.cclet.2024.110027

    10. [10]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    11. [11]

      Jing GuoZhi-Guo LuRui-Chen ZhaoBao-Ku LiXin Zhang . Nucleic acid therapy for metabolic-related diseases. Chinese Chemical Letters, 2025, 36(3): 109875-. doi: 10.1016/j.cclet.2024.109875

    12. [12]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    13. [13]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

    14. [14]

      Yan ZhuJia LiuMeiheng LvTingting WangDongxiang ZhangRong ShangXin-Dong JiangJianjun DuGuiling Wang . Heavy-atom-free orthogonal configurative dye 1,7-di-anthra-aza-BODIPY for singlet oxygen generation. Chinese Chemical Letters, 2024, 35(10): 109446-. doi: 10.1016/j.cclet.2023.109446

    15. [15]

      Mengxing LiuJing LiuHongxing ZhangJianan TaoPeiwen FanXin LvWei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994

    16. [16]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    17. [17]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    18. [18]

      Hong ZhangCui-Ping LiLi-Li WangZhuo-Da ZhouWen-Sen LiLing-Yi KongMing-Hua Yang . Asperochones A and B, two antimicrobial aromatic polyketides from the endophytic fungus Aspergillus sp. MMC-2. Chinese Chemical Letters, 2024, 35(9): 109351-. doi: 10.1016/j.cclet.2023.109351

    19. [19]

      Dongying FuLin PanYanli MaYue Zhang . Bilayered Dion–Jacobson lead-iodine hybrid perovskite with aromatic spacer for broadband photodetection. Chinese Chemical Letters, 2025, 36(2): 109621-. doi: 10.1016/j.cclet.2024.109621

    20. [20]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

Metrics
  • PDF Downloads(0)
  • Abstract views(646)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return