Citation: Yu-Heng Ma, Gang Wu, Nan Jiang, Shu-Wang Ge, Qian Zhou, Bai-Wang Sun. Microwave-assisted, facile, rapid and solvent-free one pot two-component synthesis of some special acylals[J]. Chinese Chemical Letters, ;2015, 26(1): 81-84. doi: 10.1016/j.cclet.2014.11.001 shu

Microwave-assisted, facile, rapid and solvent-free one pot two-component synthesis of some special acylals

  • Corresponding author: Bai-Wang Sun, 
  • Received Date: 28 June 2014
    Available Online: 22 October 2014

  • A facile, rapid and solvent-free method for the conversion of acids and dihalomethane to the corresponding methylene diesters (acylals) using microwave as activators or assistor, is reported. This method is particularly powerful for the diesterification of carboxylic acids, which afford methylene diesters in good to excellent yields (up to >99%). When the intermediate is trapped, a "double successive SN2 reactions" mechanism is proved.
  • 加载中
    1. [1]

      [1] (a) C.D. Hurd, S.M. Cantor, The analytical separation of various classes of sugars, J. Am. Chem. Soc. 60 (1938) 2677-2687;

    2. [2]

      (b) L.K. Sydnes, M. Sandberg, Aldehyde acylals-valuable compounds in synthesis when treated properly, PINSA 68 (2002) 141-174.

    3. [3]

      [2] (a) B.B. Snider, S.G. Amin, An improved synthesis of 1α,3β-dihydroxycholesta- 5,7-diene, Synth. Commun. 8 (1978) 117-125;

    4. [4]

      (b) G. Saucy, R. Marbet, H. Lindlar, O. Isler,Über eine neue synthese von citral und verwandten verbindungen, Helv. Chim. Acta 42 (1959) 1945-1955;

    5. [5]

      (c) B.M. Trost, C.B. Lee, Geminal dicarboxylates as carbonyl surrogates for asymmetric synthesis. Part II: scope and applications, J. Am. Chem. Soc. 123 (2001) 3687-3696;

    6. [6]

      (d) J.G. Frick, R.J. Harper, Acetals as crosslinking reagents for cotton, J. Appl. Polym. Sci. 29 (1984) 1433-1447;

    7. [7]

      (e) V.T. Kamble, V.S. Jamode, An efficient method for the synthesis of acylals from aldehydes using silica-supported perchloric acid (HClO4-SiO2), Tetrahedron Lett. 47 (2006) 5573-5576.

    8. [8]

      [3] L.K. Sydnes, M. Sandberg, The chemistry of acylals. Part I. The reactivity of acylals towards grignard and organolithium reagents, Tetrahedron 53 (1997) 12679- 12690.

    9. [9]

      [4] (a) J.M. Thomas, Uniform heterogeneous catalysts: the role of solid-state chemistry in their development and design, Angew. Chem. Int. Ed. Engl. 27 (1988) 1673-1691;

    10. [10]

      (b) M.D. Carrigan, K.J. Eash, M.C. Oswald, R.S. Mohan, An efficient method for the chemoselective synthesis of acylals from aromatic aldehydes using bismuth triflate, Tetrahedron Lett. 42 (2001) 8133-8135;

    11. [11]

      (c) M. Curini, F. Epifano, M.C. Marcotullio, O. Rosati, M. Nocchetti, Preparation and deprotection of 1,1-diacetates (acylals) using zirconium sulfophenyl phosphonate as catalyst, Tetrahedron Lett. 43 (2002) 2709-2711.

    12. [12]

      [5] (a) P. Kumar, V.R. Hegde, T.P. Kumar, An efficient synthsis of diacetates from aldehydes using beta zeolite, Tetrahedron Lett. 4 (1995) 601-603;

    13. [13]

      (b) Y. Ishino, M. Mihara, Zinc-metal promoted selective a-haloacylation and gembisacylation of alkyl aldehydes in the presence of chlorotrimethylsilane, Tetrahedron Lett. 45 (2004) 3503-3506.

    14. [14]

      [6] (a) H. Hopff, G. Hegar, Reaktionen des kohlensuboxids mit carbonylverbindungen, HeIv. Chim. Acta 44 (1961) 2016-2021; (b) D.A. Upson, V.J. Hruby, Synthesis of specifically deuterated S-benzylcysteines and of oxytocin and related diastereomers deuterated in the half-cystine positions, J. Org. Chem. 41 (1976) 1353-1358.

    15. [15]

      [7] (a) N. Deka, D.J. Kalita, R. Borah, J.C. Sarma, Iodine as acetylation catalyst in the preparation of 1,1-diacetates from aldehydes, J. Org. Chem. 62 (1997) 1563-1564;

    16. [16]

      (b) R. Ghosh, S. Maiti, A. Chakraborty, R. Halder, Indium triflate: a reusable catalyst for expeditious chemoselective conversion of aldehydes to acylals, J. Mol. Catal. 215 (2004) 49-53;

    17. [17]

      (c) B. Karimi, J. Maleki, Lithium trifluoromethanesulfonate (LiOTf) as a recyclable catalyst for highly efficient acetylation of alcohols and diacetylation of aldehydes under mild and neutral reaction conditions, J. Org. Chem. 68 (2003) 4951-4953.

    18. [18]

      [8] K. Holmberg, B. Hansen, Methylene diesters of carboxylic acids from dichloromethane, Tetrahedron Lett. 27 (1975) 2303-2306.

    19. [19]

      [9] Z.G. Luo, Y. Zhao, F. Xu, Synthesis and thermal properties of novel calix[4]arene derivatives containing 1,2,3-triazole moiety via K2CO3 catalyzed 1,3-dipolarcycloaddition reaction, Chin. Chem. Lett. 25 (2014) 1346-1348.

    20. [20]

      [10] J.H. Xue, X.H. Hua, L.M. Yang, Synthesis, crystal structures and luminescence properties of europium and terbium picolinamide complexes, Chin. Chem. Lett. 25 (2014) 887-891.

    21. [21]

      [11] A.L. Cimecioglu, G.C. East, The synthesis of cyclic methylene dicarboxylates from caesium dicarboxylates and dibromomethane, Makromol. Chem. Rapid Commun. 8 (1987) 141-146.

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    3. [3]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    4. [4]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    5. [5]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    6. [6]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    7. [7]

      Mohamed Saber LassouedFaizan AhmadYanzhen Zheng . Film thickness effect on 2D lead-free hybrid double perovskite properties: Band gap, photocurrent and stability. Chinese Chemical Letters, 2025, 36(4): 110477-. doi: 10.1016/j.cclet.2024.110477

    8. [8]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    9. [9]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    10. [10]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    11. [11]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    12. [12]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    13. [13]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    14. [14]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    15. [15]

      Ying-Di HaoZhi-Qian LinXiao-Yu GuoJiao LiangCan-Kun LuoQian-Tao WangLi GuoYong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834

    16. [16]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    17. [17]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    18. [18]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    19. [19]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    20. [20]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

Metrics
  • PDF Downloads(0)
  • Abstract views(688)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return