Citation: Yuan-Ye Jiang, Hai-Zhu Yu, Jing Shi. Mechanistic study on the regioselectivity of Co-catalyzed hydroacylation of 1,3-dienes[J]. Chinese Chemical Letters, ;2015, 26(1): 58-62. doi: 10.1016/j.cclet.2014.10.021 shu

Mechanistic study on the regioselectivity of Co-catalyzed hydroacylation of 1,3-dienes

  • Corresponding author: Hai-Zhu Yu,  Jing Shi, 
  • Received Date: 8 July 2014
    Available Online: 29 September 2014

    Fund Project: We thank the NSFC (Nos. 21325208, 21172209, 21361140372, 21202006) (Nos. 21325208, 21172209, 21361140372, 21202006) SRFDP (No. 20123402110051) (No. 20123402110051) FRFCU (No. WK2060190025) (No. WK2060190025) CAS (No. KJCX2-EW-J02) (No. KJCX2-EW-J02) Fok Ying Tung Education Foundation, Anhui Provincial Natural Science Foundation (No. 1308085QB38) (No. 1308085QB38)

  • Density functional theory (DFT) method was used to explore the origin of the regioselectivity of Cocatalyzed hydroacylation of 1,3-dienes. The reaction of 2-methyl-1,3-butadiene and benzaldehyde with 1,3-bis(diphenylphosphino)propane ligand was chosen as the model reaction. The energies of the intermediates and transition states in the stages of oxidative cyclization, β-H elimination and C-H reductive elimination were investigated. Computational results show that β-H elimination is the ratedetermining step for the whole catalytic cycle. C1-Selective oxidative cyclization is favored over C4-selective oxidative cyclization. Besides, C4-selective oxidative cyclization is kinetically disfavored than all the steps in C1-hydroacylation mechanisms, consistent with the experimentally obtained C1- selective hydroacylation products. Analyzing the reason for such observation, we suggest that both electronic and steric effects contribute to the C1-selectivity. On the electronic aspect, C1 is more electron rich than C4 due to the methyl group on C2, which makes the electrophilic attack of aldehyde carbon on C1 more favorable. On the steric aspect, the methyl group locates farther from the ligands in the transition state of C1-selective oxidative cyclization than in that of C4-selective oxidative cyclization.
  • 加载中
    1. [1]

      [1] C. Wang, Y. Fu, L. Liu, Q.X. Guo, New advance of Fe- and Co-catalyzed C-C coupling reactions, Chin. J. Org. Chem. 27 (2007) 703-723.

    2. [2]

      [2] H. Pellissier, H. Clavier, Enantioselective cobalt-catalyzed transformations, Chem. Rev. 114 (2014) 2775-2823.

    3. [3]

      [3] F. Shibahara, J.F. Bower, M.J. Krische, Diene hydroacylation from the alcohol or aldehyde oxidation level via ruthenium-catalyzed C-C bond-forming transfer hydrogenation: synthesis of β,γ-unsaturated ketones, J. Am. Chem. Soc. 130 (2008) 14120-14122.

    4. [4]

      [4] S. Omura, T. Fukuyama, J. Horiguchi, Y. Murakami, I. Ryu, Ruthenium hydridecatalyzed addition of aldehydes to dienes leading to β,γ-unsaturated ketones, J. Am. Chem. Soc. 130 (2008) 14094-14095.

    5. [5]

      [5] Q.A. Chen, D.K. Kim, V.M. Dong, Regioselective hydroacylation of 1,3-dienes by cobalt catalysis, J. Am. Chem. Soc. 136 (2014) 3772-3775.

    6. [6]

      [6] M.A. Bohn, A. Schmidt, G. Hilt, M. Dindaroğlu, H. Schmalz, Cobalt-catalyzed 1,4- hydrobutadienylation of 1-Aryl-1,3-dienes with 2,3-dimethyl-1,3-butadiene, Angew. Chem. Int. Ed. 50 (2011) 9689-9693.

    7. [7]

      [7] L. Fiebig, J. Kuttner, G. Hilt, et al., Cobalt catalysis in the gas phase: experimental characterization of cobalt(I) complexes as intermediates in regioselective Diels- Alder reactions, J. Org. Chem. 78 (2013) 10485-10493.

    8. [8]

      [8] Z.W. Yang, H.Z. Yu, Y. Fu, Mechanistic study on ligand-controlled cobalt-catalyzed regioselectivity switchable hydroarylation of styrenes, Chem. Eur. J. 19 (2013) 12093-12103.

    9. [9]

      [9] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09 Revision D.01, Wallingford, CT, 2013.

    10. [10]

      [10] X.J.Du, Y.H. Tang, X. Zhang, M. Lei,A theoretical study on the alkene insertion step in Rh-Yanphos catalyzed hydroformylation, Chin. Chem. Lett. 24 (2013) 1083-1086.

    11. [11]

      [11] T.C. Jiang, Z.Y. Wang, B.B. Du, S.S. Zhao, Theoretical characterization of hole mobility in BTBPD, Chin. Chem. Lett. 24 (2013) 945-948.

    12. [12]

      [12] T.J. Gong, Y.Y. Jiang, Y. Fu, Rh(I)-catalyzed borylation of primary alkyl chlorides, Chin. Chem. Lett. 25 (2014) 397-400.

    13. [13]

      [13] Q. Zhou, Y. Li, 1,3-Cationic alkylidene migration of nonclassical carbocation: a density functional theory study on gold(I)-catalyzed cycloisomerization of 1,5-enynes containing cyclopropene moiety, J. Am. Chem. Soc. 136 (2014) 1505-1513.

    14. [14]

      [14] B. Lu, Y. Li, Y. Wang, et al., [3,3]-Sigmatropic rearrangement versus carbene formation in gold-catalyzed transformations of alkynyl aryl sulfoxides: mechanistic studies and expanded reaction scope, J. Am. Chem. Soc. 135 (2013) 8512-8524.

    15. [15]

      [15] R. Shang, Z.W. Yang, Y. Wang, S.L. Zhang, L. Liu, Palladium-catalyzed decarboxylative couplings of 2-(2-azaaryl)acetates with aryl halides and triflates, J. Am. Chem. Soc. 132 (2010) 14391-14393.

    16. [16]

      [16] Y.F. Yang, G.J. Cheng, P. Liu, et al., Palladium-catalyzed meta-selective C-H bond activation with a nitrile-containing template: computational study on mechanism and origins of selectivity, J. Am. Soc. Chem. 136 (2014) 344-355.

    17. [17]

      [17] S. Zhang, L. Shi, Y. Ding, Theoretical analysis of the mechanism of palladium(Ⅱ) acetate-catalyzed oxidative Heck coupling of electron-deficient arenes with alkenes: effects of the pyridine-type ancillary ligand and origins of the metaregioselectivity, J. Am. Chem. Soc. 133 (2011) 20218-20229.

    18. [18]

      [18] L. Li, F. Wu, S. Zhang, et al., A heteroleptic cyclometalated iridium(Ⅲ) fluorophenylpyridine complex from partial defluorohydrogenation reaction: synthesis, photophysical properties and mechanistic insights, Dalton Trans. 42 (2013) 4539-4543.

    19. [19]

      [19] S. Qu, Y. Dang, C. Song, et al., Catalytic mechanisms of direct pyrrole synthesis via dehydrogenative coupling mediated by PNP-Ir or PNN-Ru pincer complexes: crucial role of proton-transfer shuttles in the PNP-Ir System, J. Am. Chem. Soc. 136 (2014) 4974-4991.

    20. [20]

      [20] Y. Dang, S. Qu, Z.X. Wang, X. Wang, A computational mechanistic study of an unprecedented Heck-type relay reaction: insight into the origins of regio- and enantioselectivities, J. Am. Chem. Soc. 136 (2014) 986-998.

    21. [21]

      [21] Z. Dong, C.H. Liu, Y. Wang, M. Lin, Z.X. Yu, Gold(I)-catalyzed endo-selective intramolecular a-alkenylation of b-yne-furans: synthesis of seven-memberedring- fused furans and DFT calculations, Angew. Chem. Int. Ed. 52 (2013) 14157-14161.

    22. [22]

      [22] Y. Fu, Z. Li, S. Liang, Q.X. Guo, L. Liu, Mechanism for carbon-oxygen bond-forming reductive elimination from palladium(IV) complexes, Organometallics 27 (2008) 3736-3742.

    23. [23]

      [23] H.Z. Yu, Y.Y. Jiang, Y. Fu, L. Liu, Alternative mechanistic explanation for liganddependent selectivities in copper-catalyzed N- and O-arylation reactions, J. Am. Chem. Soc. 132 (2010) 18078-18091.

    24. [24]

      [24] Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theor. Chem. Acc. 120 (2008) 215-241.

    25. [25]

      [25] P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations - potentials for the transition-metal atoms Sc to Hg, J. Chem. Phys. 82 (1985) 270-283.

    26. [26]

      [26] Z. Li, S.L. Zhang, Y. Fu, Q.X. Guo, L. Liu, Mechanism of Ni-catalyzed selective C-O bond activation in cross-coupling of aryl esters, J. Am. Chem. Soc. 131 (2009) 8815-8823.

    27. [27]

      [27] Z. Li, Y. Fu, S.L. Zhang, Q.X. Guo, L. Liu, Heck-type reactions of imine derivatives: a DFT study, Chem. Asian J. 5 (2010) 1475-1486.

    28. [28]

      [28] Y.Y. Jiang, Y. Fu, L. Liu, Mechanism of palladium-catalyzed decarboxylative crosscoupling between cyanoacetate salts and aryl halides, Sci. China Chem. 55 (2012) 2057-2062.

    29. [29]

      [29] A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, J. Phys. Chem. B 113 (2009) 6378-6396.

    30. [30]

      [30] Q. Meng, F. Wang, M. Li, Ruthenium hydride-catalyzed regioselective addition of benzaldehyde to dienes leading to β,γ-unsaturated ketones: a DFT study, J. Mol. Model 18 (2012) 4955-4963.

  • 加载中
    1. [1]

      Peng GuoShicheng DongXiang-Gui ZhangBing-Bin YangJun ZhuKe-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052

    2. [2]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    3. [3]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    4. [4]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    5. [5]

      Qiuyun LiYannan ZhuYining WangGang QiWen-Juan HaoKelu YanBo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494

    6. [6]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    7. [7]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    8. [8]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    9. [9]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    10. [10]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    11. [11]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    12. [12]

      Ze ZhangLei YangJin-Ru LiuHao HuJian-Li MiChao SuBei-Bei XiaoZhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013

    13. [13]

      Chaozheng HeMenghui XiChenxu ZhaoRan WangLing FuJinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671

    14. [14]

      Mianfeng LiHaozhi WangZijun YangZexiang YinYuan LiuYingmei BianYang WangXuerong ZhengYida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199

    15. [15]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    16. [16]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    17. [17]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    18. [18]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    19. [19]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    20. [20]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

Metrics
  • PDF Downloads(0)
  • Abstract views(772)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return