Citation:
Anna Pratima G. Nikalje, Mangesh S. Ghodke, Firoz A. Kalam Khan, Jaiprakash N. Sangshetti. CAN catalyzed one-pot synthesis and docking study of some novel substituted imidazole coupled 1,2,4-triazole-5-carboxylic acids as antifungal agents[J]. Chinese Chemical Letters,
;2015, 26(1): 108-112.
doi:
10.1016/j.cclet.2014.10.020
-
The present work describes a facile, one-pot three component synthesis of a series of 3-[(4,5-diphenyl-2-substituted aryl/heteryl)-1H-imidazol-1-yl]-1H-1,2,4-triazole-5-carboxylic acid derivatives M(1-15). Benzil, aromatic aldehydes and 3-amino-1,2,4-triazole-5-carboxylic acid was refluxed in ethanol using cerric ammonium nitrate (CAN) as a catalyst to give the title compounds in good yields. The compounds were evaluated for their in vitro antifungal and antibacterial activity. Compounds M1, M9, and M15 were found to be equipotent against Candida albicans when compared with fluconazole. Compounds M2, M5, and M14 showed higher activity against Streptococcus pneumoniae, Escherichia coli and Streptococcus pyogenes, respectively, compared with ampicillin. Docking study of the newly synthesized compounds was performed, and the results showed good bindingmode in the active sites of C. albicans enzyme cytochrome P450 lanosterol 14α-demethylase. The results of in vitro antifungal activity and docking study showed that synthesized compounds had potential antifungal activity and can be further optimized and developed as a lead compound.
-
-
-
[1]
[1] A.A. Marzouk, V.M. Abbasov, A.H. Talybov, Synthesis of 2,4,5-triphenyl imidazole derivatives using diethyl ammonium hydrogen phosphate as green, fast and reusable catalyst, World J. Org. Chem. 1 (2013) 6-10.
-
[2]
[2] P.P. Reddy, K. Mukkanti, K. Purandhar, ALPO4 mediated one-pot, four-component synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles under conventional heating and microwave irradiation, Rasayan J. Chem. 3 (2010) 335-340.
-
[3]
[3] P.J. Das, J. Das, M. Ghosh, Solvent free one-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles catalyzed by secondary amine based ionic liquid and defective keggin heteropoly acid, Green Sustain. Chem. 3 (2013) 6-13.
-
[4]
[4] J.H. Block, J.M. Beale (Eds.), Wilson and Griswold's Textbook of Organic Medicinal and Pharmaceutical Chemistry, 11th ed., Lippincott's Williams & Wilkins Publication, 2004, p. 240.
-
[5]
[5] Y. Ozkay, I. Iskdag, Z. Incesu, G. Akalın, Synthesis of 2-substituted-N-[4-(1-methyl- 4,5-diphenyl-1H-imidazole-2-yl)phenyl]acetamide derivatives and evaluation of their anticancer activity, Eur. J. Med. Chem. 45 (2010) 3320-3328.
-
[6]
[6] M.R. Wiley, L.C. Weir, S.L. Briggs, N.Y. Chirgadze, D. Clawson, The design of potent, selective, non-covalent, peptide thrombin inhibitors utilizing imidazole as a S1 binding element, Bioorg. Med. Chem. Lett. 9 (1999) 2767-2772.
-
[7]
[7] A. Puratchikodya, M. Doble, Antinociceptive and antiinflammatory activities and QSAR studies on 2-substituted-4,5-diphenyl-1H-imidazoles, Bioorg. Med. Chem. 15 (2007) 1083-1090.
-
[8]
[8] K.C.S. Achar, K.M. Hosamani, H.R. Seetharamareddy, In-vivo analgesic and anti-inflammatory activities of newly synthesized benzimidazole derivatives, Eur. J. Med. Chem. 45 (2010) 2048-2054.
-
[9]
[9] R.V. Shingalapur, K.M. Hosamani, R.S. Keri, Synthesis and evaluation of in vitro anti-microbial and anti-tubercular activity of 2-styryl benzimidazoles, Eur. J. Med. Chem. 44 (2009) 4244-4248.
-
[10]
[10] D. Sharma, B. Narasimhan, P. Kumar, et al., Synthesis, antimicrobial and antiviral evaluation of substituted imidazole derivatives, Eur. J. Med. Chem. 44 (2009) 2347-2353.
-
[11]
[11] D. Zampieri, M.G. Mamolo, L. Vio, et al., Synthesis, antifungal and antimycobacterial activities of new bis-imidazole derivatives, and prediction of their binding to P45014DM by molecular docking and MM/PBSA method, Bioorg. Med. Chem. 15 (2007) 7444-7458.
-
[12]
[12] D. Olender, J. Zwawiak, V. Lukianchuk, et al., Synthesis of some N-substituted nitroimidazole derivatives as potential antioxidant and antifungal agents, Eur. J. Med. Chem. 44 (2009) 645-652.
-
[13]
[13] M. Tonelli, M. Simone, B. Tasso, F. Novelli, V. Boido, Antiviral activity of benzimidazole derivatives. II. Antiviral activity of 2-phenylbenzimidazole derivatives, Bioorg. Med. Chem. 18 (2010) 2937-2953.
-
[14]
[14] P. Gupta, S. Hameed, R. Jain, Ring-substituted imidazoles as a new class of antituberculosis agents, Eur. J. Med. Chem. 39 (2004) 805-814.
-
[15]
[15] J. Pandey, T.K. Vinod, S.S. Verma, et al., Synthesis and antitubercular screening of imidazole derivatives, Eur. J. Med. Chem. 44 (2009) 3350-3355.
-
[16]
[16] G. Nurhan, S. Mevlut, C. Elif, S. Ali, D. Neslihan, Synthesis and antimicrobial activities of some new 1,2,4-triazole derivatives, Turk. J. Chem. 31 (2007) 335-348.
-
[17]
[17] S.F. Barbuceanu, L.A. Gabriela, S. Ioana, D. Constanatin, S. Radu, New S-alkylated 1,2,4-triazoles incorporating diphenyl sulfone moieties with potential antibacterial activity, J. Serb. Chem. Soc. 74 (2009) 1041-1049.
-
[18]
[18] M.R. Banday, A. Rauf, Substituted 1,2,4-triazoles and thiazolidinones from fatty acids spectral characterization and antimicrobial activity, Indian J. Chem. 48 (2009) 97-102.
-
[19]
[19] J.N. Sangshetti, D.B. Shinde, A.P. Sarkate, Synthesis, antifungal activity and docking study of some new 1,2,4-triazole analogs, Chem. Biol. Drug Des. 78 (2011) 800-809.
-
[20]
[20] R. Tang, L. Jin, C. Mou, et al., Synthesis, antifungal and antibacterial activity for novel amide derivatives containing a triazole moiety, Chem. Cent. J. (2013) 7-30.
-
[21]
[21] X. Chai, J. Zhang, Y. Cao, et al., Design, synthesis and molecular docking studies of novel triazole as antifungal agent, Eur. J. Med. Chem. 46 (2011) 3167-3176.
-
[22]
[22] Y. Jiang, J. Zhang, Y. Cao, et al., Synthesis, in vitro evaluation and molecular docking studies of new triazole derivatives as antifungal agents, Bioorg. Med. Chem. Lett. 21 (2011) 4471-4475.
-
[23]
[23] K.S. Bhat, Synthesis and antitumor activity studies of some new fused 1,2,4- triazole derivatives carrying 2,4-dichloro-5-fluorophenyl moiety, Eur. J. Med. Chem. 44 (2009) 5066-5070.
-
[24]
[24] Y.A. Al-Soud, M.N. Al-Dweri, N.A. Al-Masoudi, Synthesis, antitumor and antiviral properties of some 1,2,4-triazole derivatives, Farmaco 59 (2004) 775-783.
-
[25]
[25] P. Valentina, K. Ilango, M. Deepthi, et al., Antioxidant activity of some substituted 1, 2, 4-triazo-5-thione Schiff base, J. Pharm. Sci. Res. 2 (2009) 74-77.
-
[26]
[26] H. Yuksek, S. Kalayli, M.M.O. Mucuk, Synthesis and antioxidant activities of some 4-benzylidenamino-4,5-dihydro-1H-1,2,4-triazol-5-one derivatives, Ind. J. Chem. 45 (2006) 715-718.
-
[27]
[27] (a) A. Ning, Z. Wang, X. Xu, X. Li, One-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles by a tandem three-component reaction of hydroxyl amines, aldehydes and 2-azido acrylates, ARKIVOC VI (2012) 222-228;
-
[28]
(b) J.N. Sangshetti, N.D. Kokare, S.D. Kotharkar, D.B. Shinde, ZrOCl2·8H2O catalyzed one-pot synthesis of 2,4,5-triaryl-1H-imidazoles and substituted 1,4- di(4,5-diphenylimidazol-yl)benzene, Chin. Chem. Lett. 19 (2008) 762-768.
-
[29]
[28] R.K. Sharma, An efficient and one pot synthesis of poly substituted imidazoles catalyzed by BiCl3, Indian J. Chem. 51B (2012) 1489-1493.
-
[30]
[29] A. Saberi, Synthesis of novel highly potent antibacterial and antifungal agents, Asian J. Med. Pharm. Res. 1 (2012) 01-05.
-
[31]
[30] (a) J.N. Sangshetti, N.D. Kokare, S.A. Kotharkar, D.B. Shinde, Ceric ammonium nitrate catalysed three component one-pot efficient synthesis of 2,4,5-triaryl-1Himidazoles, J. Chem. Sci. 120 (2008) 463-467;
-
[32]
(b) K.F. Shelke, S.B. Sapkal, M.S. Shingare, Ultrasound-assisted one-pot synthesis of 2,4,5-triarylimidazole derivatives catalyzed by ceric (IV) ammonium nitrate in aqueous media, Chin. Chem. Lett. 20 (2009) 283-287.
-
[33]
[31] D. Greenwood, R.C.B. Slack, J.F. Peutherer, Medical Microbiology, 14th ed., ELBS, London, 1992.
-
[34]
[32] J.N. Sangshetti, F.A.K. Khan, R.S. Chouthe, et al., Synthesis, docking and ADMET prediction of novel 5-((5-substituted-1-H-1,2,4-triazol-3-yl)methyl)-4,5,6,7-tetrahydrothieno[ 3,2-c]pyridine as antifungal agents, Chin. Chem. Lett. 25 (2014) 1033-1038.
-
[35]
[33] N. Strushkevich, S.A. Usanov, H.W. Park, Structural basis of human CYP51 inhibition by antifungal azoles, J. Mol. Biol. 397 (2010) 1067-1078.
-
[36]
[34] R.W. Hooft, G. Vriend, C. Sander, E.E. Abola, Errors in protein structures, Nature 381 (1996) 272.
-
[37]
[35] VLife Molecular Design Suite 4.3, VLife Sciences Technologies Pvt. Ltd; www. Vlifesciences.com.
-
[1]
-
-
-
[1]
Yun-Feng Liu , Hui-Fang Du , Ya-Hui Zhang , Zhi-Qin Liu , Xiao-Qian Qi , Du-Qiang Luo , Fei Cao . Chaeglobol A, an unusual octocyclic sterol with antifungal activity from the marine-derived fungus Chaetomium globosum HBU-45. Chinese Chemical Letters, 2025, 36(3): 109858-. doi: 10.1016/j.cclet.2024.109858
-
[2]
Shiqi Xu , Zi Ye , Shuang Shang , Fengge Wang , Huan Zhang , Lianguo Chen , Hao Lin , Chen Chen , Fang Hua , Chong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034
-
[3]
Xingyu Chen , Sihui Zhuang , Weiyao Yan , Zhengli Zeng , Jianguo Feng , Hongen Cao , Lei Yu . Synthesis, antibacterial evaluation, and safety assessment of Se@PLA as a potent bactericide against Xanthomonas oryzae pv. oryzae. Chinese Chemical Letters, 2024, 35(10): 109635-. doi: 10.1016/j.cclet.2024.109635
-
[4]
Yanye Fan , Jingjing Chen , Bichun Chen , Jinyu Bai , Bowen Yang , Feng Liang , Lijing Fang . Design, synthesis and biological evaluation of Leu10-teixobactin analogues. Chinese Chemical Letters, 2025, 36(4): 110075-. doi: 10.1016/j.cclet.2024.110075
-
[5]
Chong Liu , Ling Li , Jiahui Gao , Yanwei Li , Nazhen Zhang , Jing Zang , Cong Liu , Zhaopei Guo , Yanhui Li , Huayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118
-
[6]
Fangping Yang , Jin Shi , Yuansong Wei , Qing Gao , Jingrui Shen , Lichen Yin , Haoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746
-
[7]
Fuyun Chi , Man Zhang , Yiman Han , Fukui Shen , Shijie Peng , Bo Su , Yuanyuan Hou , Gang Bai . Covalent modulation of mPGES1 activity via α,β-unsaturated aldehyde group: Implications for downregulating PGE2 expression and antipyretic response. Chinese Chemical Letters, 2025, 36(4): 109913-. doi: 10.1016/j.cclet.2024.109913
-
[8]
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
-
[9]
Anqiu LIU , Long LIN , Dezhi ZHANG , Junyu LEI , Kefeng WANG , Wei ZHANG , Junpeng ZHUANG , Haijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424
-
[10]
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
-
[11]
Jia Chen , Yun Liu , Zerong Long , Yan Li , Hongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463
-
[12]
Sanmei Wang , Dengxin Yan , Wenhua Zhang , Liangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611
-
[13]
Guangyao Wang , Zhitong Xu , Ye Qi , Yueguang Fang , Guiling Ning , Junwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503
-
[14]
Simin Wei , Yaqing Yang , Junjie Li , Jialin Wang , Jinlu Tang , Ningning Wang , Zhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114
-
[15]
Peng Zhang , Yitao Yang , Tian Qin , Xueqiu Wu , Yuechang Wei , Jing Xiong , Xi Liu , Yu Wang , Zhen Zhao , Jinqing Jiao , Liwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396
-
[16]
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
-
[17]
Ting Wang , Xin Yu , Yaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320
-
[18]
Di ZHANG , Tianxiang XIE , Xu HE , Wanyu WEI , Qi FAN , Jie QIAO , Gang JIN , Ningbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329
-
[19]
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
-
[20]
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(711)
- HTML views(24)