Citation: Ru-Wei Shen, Jian-Jun Yang, Li-Xiong Zhang. Facile synthesis of phthalan derivatives via a Pd-catalyzed tandem hydroalkynylation, isomerization, Diels-Alder cycloaddition and aromatization reaction[J]. Chinese Chemical Letters, ;2015, 26(1): 73-76. doi: 10.1016/j.cclet.2014.10.018 shu

Facile synthesis of phthalan derivatives via a Pd-catalyzed tandem hydroalkynylation, isomerization, Diels-Alder cycloaddition and aromatization reaction

  • Corresponding author: Ru-Wei Shen,  Li-Xiong Zhang, 
  • Received Date: 11 August 2014
    Available Online: 10 October 2014

    Fund Project: The financial support from the National Natural Science Foundation of China (No. 21302095) (No. 21302095) Research Fund for the Doctoral Program of Higher Education of China (No. 20133221120003) (No. 20133221120003) Jiangsu Provincial NSFC (No. BK20130924) (No. BK20130924)Foundation of Jiangsu Educational Committee of China (No. 13KJB150019) is fully acknowledged. (No. 13KJB150019)

  • A novel Pd-catalyzed tandem reaction involving hydroalkynylation, isomerization, Diels-Alder cycloaddition and aromatization reaction to produce phthalan derivatives in moderate yields is reported. The reaction is atom economical and occurs in a highly ordered fashion. The reaction mechanism is discussed.
  • 加载中
    1. [1]

      [1] R. Karmakar, P. Pahari, D. Mal, Phthalides and phthalans: synthetic methodologies and their applications in the total synthesis, Chem. Rev. 114 (2014) 6213-6284.

    2. [2]

      [2] (a) J.F. Debernardis, D.L. Arendsen, J.J. Kyncl, D.J. Kerkman, Conformationally defined adrenergic agents. 4. 1-(aminomethyl)phthalans: synthesis and pharmacological consequences of the phthalan ring oxygen atom, J. Med. Chem. 30 (1987) 178-184;

    3. [3]

      (b) D.S. Kim, K.K. Kang, K.S. Lee, et al., Synthesis and biological properties of new 5-cyano-1,1-disubstituted phthalans for the treatment of premature ejaculation, Bull. Korean Chem. Soc. 29 (2008) 1946-1950;

    4. [4]

      (c) D.A. Oparin, Z.V. Motylevich, Synthesis and antitumor activity of monomethinecyanine dyes of the phthalan series with nuclei of phthalazine, benzo-1,2- dithiol, and thiophthalan, Pharm. Chem. J. 28 (1994) 233-235.

    5. [5]

      [3] J.K. Harper, A.M. Arif, E.J. Ford, et al., Pestacin: a 1,3-dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities, Tetrahedron 59 (2003) 2471-2476.

    6. [6]

      [4] B.G. Pollock, Citalopram: a comprehensive review, Exp. Opin. Pharmacother. 2 (2001) 681-698.

    7. [7]

      [5] (a) D. Garcia, F. Foubelo, M. Yus, Regioselective reductive opening of substituted phthalans: synthetic applications, Tetrahedron 64 (2008) 4275-4286;

    8. [8]

      (b) A. Lifshitz, A. Suslensky, C. Tamburu, Thermal reactions of isodihydrobenzofuran: experimental results and computer modeling, J. Phys. Chem. A. 105 (2001) 3148-3157;

    9. [9]

      (c) A.E. Dorigo, K.N. Houk, T. Cohen, Unexpected regioselectivity in the reductive cleavage of epoxides - a theoretical rationalization, J. Am. Chem. Soc. 111 (1989) 8976-8978.

    10. [10]

      [6] (a) U. Azzena, S. Demartis, G. Melloni, Electron-transfer-induced reductive cleavage of phthalans: reactivity and synthetic applications, J. Org. Chem. 61 (1996) 4913-4919;

    11. [11]

      (b) L.R. Falvello, F. Foubelo, T. Soler, M. Yus, Structural modification of steroids through functionalized organolithium compounds, Tetrahedron: Asymmetry 11 (2000) 2063-2066;

    12. [12]

      (c) F. Foubelo, T. Soler, M. Yus, Synthesis of functionalized enantiopure steroids from estrone and cholestanone through organolithium intermediates, Tetrahedron: Asymmetry 12 (2001) 801-810;

    13. [13]

      (d) M. Yus, J. Gomis, ZnBr2/CuCN-promoted, highly regioselective S(N)2' reactions of some functionalized organolithium compounds with allylic and propargylic halides, Eur. J. Org. Chem. (2003) 2043-2048;

    14. [14]

      (e) M. Yus, J. Gomis, Negishi cross-coupling with functionalised organozinc compounds prepared by lithium-zinc transmetallation, Tetrahedron Lett. 42 (2001) 5721-5724;

    15. [15]

      (f) T. Soler, A. Bachki, L.R. Falvello, F. Foubelo, M. Yus, Structural modification of carbohydrates via functionalised organolithium intermediates: EPC preparation of branched-chain functionalised sugars, Tetrahedron: Asymmetry 11 (2000) 493-517.

    16. [16]

      [7] (a) Y. Sawama, K. Shibata, Y. Sawama, et al., Iron-catalyzed ring-opening azidation and allylation of O-heterocycles, Org. Lett. 15 (2013) 5280-5285;

    17. [17]

      (b) Y. Sawama, Y. Sawama, N. Krause, Highly regioselective gold-catalyzed ringopening allylation and azidation of dihydrofurans, Org. Lett. 11 (2009) 5034- 5037.

    18. [18]

      [8] (a) B. Panda, T.K. Sarkar, A one-pot tandem oxidation-reduction protocol for the synthesis of cyclic ethers from their diols, Tetrahedron Lett. 49 (2008) 6701- 6703;

    19. [19]

      (b) K. Kobayashi, K. Shikata, S. Fukamachi, H. Konishi, A facile synthesis of 1,3- dihydroisobenzofurans using iodocylization of 2-vinylbenzyl alcohols, Heterocycles 75 (2008) 599-609;

    20. [20]

      (c) V. Capriati, S. Florio, R. Luisi, B. Musio, Directed ortho lithiation of N-alkylphenylaziridines, Org. Lett. 7 (2005) 3749-3752;

    21. [21]

      (d) V. Capriati, S. Florio, R. Luisi, F.M. Perna, A. Salomone, Synthesis of 1,3- dihydrobenzo[c]furans from ortho-lithiated aryloxiranes, J. Org. Chem. 71 (2006) 3984-3987;

    22. [22]

      (e) M. Rottländer, P. Knochel, Synthesis of 2,4-disubstituted 2,5-dihydrofurans and 1-substituted 1,3-dihydroisobenofurans via an iodine-magnesium exchange reaction, J. Comb. Chem. 1 (1999) 181-183.

    23. [23]

      [9] P.R. Chopade, J. Louie, [2 + 2 + 2] Cycloaddition reactions catalyzed by transition metal complexes, Adv. Synth. Catal. 348 (2006) 2307-2327.

    24. [24]

      [10] (a) M. Guiso, A. Betrow, C. Marra, The oxa-Pictet-Spengler reaction: a highlight on the different efficiency between isochroman and phthalan or homoisochroman derivatives synthesis, Eur. J. Org. Chem. (2008) 1967-1976;

    25. [25]

      (b) R. Karmakar, P. Pahari, D. Mal, A synthetic route to 1,3-dihydroisobenzofuran natural products: the synthesis of methyl ethers of pestacin, Tetrahedron Lett. 50 (2009) 4042-4045;

    26. [26]

      (c) P. Wang, R. Zhang, J. Cai, J.Q. Chen, M. Ji, Efficient synthesis of functionalized 1,3-dihydroisobenzofurans from salicylaldehydes: application to the synthesis of escitalopram, Chin. Chem. Lett. 25 (2014) 549-552;

    27. [27]

      (d) Y.H. Liu, T.M. Fu, C.Y. Ou, W.L. Fan, G.P. Peng, Improved preparation of (1S, 30R,40S,50S,60R)-5-chloro-6-[(4-ethylphenyl)methyl]-3',4',5',6'-tetrahydro-6'- (hydroxymethyl)-spiro[isobenzofuran-1(3H),2'-[2H]pyran]-3',4',5'-triol, Chin. Chem. Lett. 24 (2013) 131-133.

    28. [28]

      [11] R. Shen, X. Huang, L. Chen, A facile and efficient synthesis of dihydroisobenzofuran derivatives via tandem palladium-catalyzed coupling, propargyl-allenyl rearrangement,[4 + 2] cycloaddition and aromatization reaction, Adv. Synth. Catal. 350 (2008) 2865-2870.

    29. [29]

      [12] R. Shen, K. Chen, Q. Deng, J. Yang, L. Zhang, Highly stereoselective generation of complex oxy-bicyclic scaffolds via an atom-economic Pd(Ⅱ)-catalyzed hydroalkynylation, isomerization and Diels-Alder cycloaddition sequence, Org. Lett. 16 (2014) 1208-1211.

    30. [30]

      [13] B. Neises, W. Steglich, Simple method for the esterification of carboxylic acids, Angew. Chem. Int. Ed. 17 (1978) 522-524.

    31. [31]

      [14] T.E. Nielsen, S. Le Quement, D. Tanner, Palladium-catalyzed silastannation of secondary propargylic alcohols and their derivatives, Synthesis 9 (2004) 1381-1390.

    32. [32]

      [15] B.M. Trost, M.T. Sorum, C. Chan, A.E. Harms, G. Rühter, Palladium-catalyzed additions of terminal alkynes to acceptor alkynes, J. Am. Chem. Soc. 119 (1997) 698-708.

  • 加载中
    1. [1]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    2. [2]

      Yunqiang LiYongxian HuangSinuo LiHe HuangZhiwei Jiao . Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes. Chinese Chemical Letters, 2025, 36(4): 110051-. doi: 10.1016/j.cclet.2024.110051

    3. [3]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    4. [4]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    5. [5]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    6. [6]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    7. [7]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    8. [8]

      Shuai ZhuMingjie ChenHaichao ShenHanming DingWenbo LiJunliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879

    9. [9]

      Jian-Rong Li Jieying Hu Lai-Hon Chung Jilong Zhou Parijat Borah Zhiqing Lin Yuan-Hui Zhong Hua-Qun Zhou Xianghua Yang Zhengtao Xu Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380

    10. [10]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    11. [11]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    12. [12]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    13. [13]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    14. [14]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    15. [15]

      Lin Zhang Chaoran Li Thongthai Witoon Xingda An Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456

    16. [16]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    17. [17]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    18. [18]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    19. [19]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    20. [20]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

Metrics
  • PDF Downloads(0)
  • Abstract views(807)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return