Citation: Li-Yan Fan, Ying-Hui Shang, Xiang-Xiong Li, Wen-Jun Hua. Yttrium-catalyzed heterocyclic formation via aerobic oxygenation: A green approach to benzothiazoles[J]. Chinese Chemical Letters, ;2015, 26(1): 77-80. doi: 10.1016/j.cclet.2014.10.017 shu

Yttrium-catalyzed heterocyclic formation via aerobic oxygenation: A green approach to benzothiazoles

  • Corresponding author: Li-Yan Fan, 
  • Received Date: 5 August 2014
    Available Online: 9 October 2014

    Fund Project: We gratefully acknowledge the National Natural Science Foundation of China (No. 20802052) for financial support. (No. 20802052)

  • The YCl3-catalyzed aerobic oxidative cyclization reaction for the synthesis of benzothiazoles has been developed. This method provides a practical, effective and green synthetic approach to benzothiazoles which are important units in many biologically active compounds.
  • 加载中
    1. [1]

      [1] M. Hudlicky, Oxidations in Organic Chemistry, American Chemical Society, Washington, D.C., 1990.

    2. [2]

      [2] L. Chen, B.D. Li, Q.X. Xu, D.B. Liu, A silica gel supported cobalt(Ⅱ) Schiff base complex as efficient and recyclable heterogeneous catalyst for the selective aerobic oxidation of alkyl aromatics, Chin. Chem. Lett. 24 (2013) 849-852.

    3. [3]

      [3] B.L. Mylari, E.R. Larson, T.A. Beyer, et al., Novel, potent aldose reductase inhibitors: 3,4-dihydro-4-oxo-3-[[5-(trifluoromethyl)-2-benzothiazolyl]methyl]-1-phthalazineacetic acid (zopolrestat) and congeners, J. Med. Chem. 34 (1991) 108-122.

    4. [4]

      [4] (a) C.G. Mortimer, G. Wells, J.P. Crochard, et al., Antitumor benzothiazoles. 26.(1) 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (GW 610 NSC 721648), a simple fluorinated 2-arylbenzothiazole, shows potent and selective inhibitory activity against lung, colon, and breast cancer cell lines, J. Med. Chem. 49 (2006) 179-185;

    5. [5]

      (b) S. Aiello, G. Wells, E.L. Stone, et al., Synthesis and biological properties of benzothiazole, benzoxazole, and chromen-4-one analogues of the potent antitumor agent 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (PMX 610, NSC 721648), J. Med. Chem. 51 (2008) 5135-5139.

    6. [6]

      [5] J. Geng, M. Li, L. Wu, J. Ren, X. Qu, Liberation of copper from amyloid plaques: making a risk factor useful for Alzheimer's disease treatment, J. Med. Chem. 55 (2012) 9146-9155.

    7. [7]

      [6] Y.H. Cho, C.Y. Lee, D.C. Ha, C.H. Cheon, Cyanide as a powerful catalyst for facile preparation of 2-substituted benzoxazoles via aerobic oxidation, Adv. Synth. Catal. 354 (2012) 2992-2996.

    8. [8]

      [7] P. Bandyopadhyay, M. Sathe, G.K. Prasad, P. Sharma, M.P. Kaushik, Mesoporous mixed metal oxide nanocrystals: efficient and recyclable heterogeneous catalysts for the synthesis of 1,2-disubstituted benzimidazoles and 2-substituted benzothiazoles, J. Mol. Catal. A: Chem. 341 (2011) 77-82.

    9. [9]

      [8] Y. Liao, H. Qi, S. Chen, et al., Efficient 2-aryl benzothiazole formation from aryl ketones and 2-aminobenzenethiols under metal-free conditions, Org. Lett. 14 (2012) 6004-6007.

    10. [10]

      [9] N. Park, Y. Heo, M.R. Kumar, et al., Synthesis of benzothiazoles through coppercatalyzed one-pot three-component reactions with use of sodium hydrosulfide as a sulfur surrogate, Eur. J. Org. Chem. (2012) 1984-1993.

    11. [11]

      [10] G.H. Sung, I.H. Lee, B.R. Kim, et al., Eco-friendly atom-economical synthesis of 2- substituted-benzo[d]thiazoles and 2-substituted-benzo[d]oxazoles using 2-acylpyridazin- 3(2H)-ones, Tetrahedron 69 (2013) 3530-3535.

    12. [12]

      [11] Z. Yang, X. Chen, S. Wang, et al., Synthesis of 2-aryl benzothiazoles via K2S2O8- mediated oxidative condensation of benzothiazoles with aryl aldehydes, J. Org. Chem. 77 (2012) 7086-7091.

    13. [13]

      [12] K. Bahrami, M.M. Khodaei, F. Naali, Mild and highly efficient method for the synthesis of 2-arylbenzimidazoles and 2-arylbenzothiazoles, J. Org. Chem. 73 (2008) 6835-6837.

    14. [14]

      [13] H.Y. Guo, J.C. Li, Y.L. Shang, A simple and efficient synthesis of 2-substituted benzothiazoles catalyzed by H2O2/HCl, Chin. Chem. Lett. 20 (2009) 1408-1410.

    15. [15]

      [14] G. Evindar, R.A. Batey, Parallel synthesis of a library of benzoxazoles and benzothiazoles using ligand-accelerated copper-catalyzed cyclizations of ortho-halobenzanilides, J. Org. Chem. 71 (2006) 1802-1808.

    16. [16]

      [15] K. Inamoto, C. Hasegawa, K. Hiroya, T. Doi, Palladium-catalyzed synthesis of 2- substituted benzothiazoles via a C-H functionalization/intramolecular C-S bond formation process, Org. Lett. 10 (2008) 5147-5150.

    17. [17]

      [16] H. Hachiya, K. Hirano, T. Satoh, M. Miura, Nickel-catalyzed direct arylation of azoles with aryl bromides, Org. Lett. 11 (2009) 1737-1740.

    18. [18]

      [17] M.G. Organ, M. Abdel-Hadi, S. Avola, et al., Biaryls made easy: PEPPSI and the Kumada-Tamao-Corriu reaction, Chem.: Eur. J. 13 (2007) 150-157.

    19. [19]

      [18] M. Abdollahi-Alibeik, S. Poorirani, Perchloric acid-doped polyaniline as an efficient and reusable catalyst for the synthesis of 2-substituted benzothiazoles, Phosphorus Sulfur 184 (2009) 3182-3190.

    20. [20]

      [19] T.G. Deligeorgiev, S. Kaloyanova, A. Vasilev, J.J. Vaquero, Novel green procedure for the synthesis of 2-arylbenzothiazoles under microwave irradiation in PEG 200 or PEG 400, Phosphorus Sulfur 185 (2010) 2292-2302.

    21. [21]

      [20] T. Yamamoto, K. Muto, M. Komiyama, et al., Nickel-catalyzed C-H arylation of azoles with haloarenes: scope, mechanism, and applications to the synthesis of bioactive molecules, Chem.: Eur. J. 17 (2011) 10113-10122.

    22. [22]

      [21] D. Crich, M. Patel, Radical dearomatization of arenes and heteroarenes, Tetrahedron 62 (2006) 7824-7837.

    23. [23]

      [22] T. Itoh, T. Mase, A novel practical synthesis of benzothiazoles via Pd-catalyzed thiol cross-coupling, Org. Lett. 9 (2007) 3687-3689.

    24. [24]

      [23] H. Sharghi, O. Asemani, Methanesulfonic acid/SiO2 as an efficient combination for the synthesis of 2-substituted aromatic and aliphatic benzothiazoles from carboxylic acids, Synth. Commun. 39 (2009) 860-867.

    25. [25]

      [24] Y.M. Ha, J.Y. Park, Y.J. Park, et al., Synthesis and biological activity of hydroxy substituted phenyl-benzo[d]thiazole analogues for antityrosinase activity in B16 cells, Bioorg. Med. Chem. Lett. 21 (2011) 2445-2449.

    26. [26]

      [25] C. Zhu, T. Akiyama, Benzothiazoline: highly efficient reducing agent for the enantioselective organocatalytic transfer hydrogenation of ketimines, Org. Lett. 11 (2009) 4180-4183.

    27. [27]

      [26] H. Chikashita, M. Miyazaki, K. Itoh, 2-Phenylbenzothiazoline as a reducing agent in the conjugate reduction of α,β-unsaturated carbonyl compounds, Synthesis (1984) 308-310.

    28. [28]

      [27] K.M. Khan, F. Rahim, S.A. Halim, et al., Synthesis of novel inhibitors of betaglucuronidase based on benzothiazole skeleton and study of their binding affinity by molecular docking, Bioorg. Med. Chem. 19 (2011) 4286-4294.

    29. [29]

      [28] V.S. Padalkar, V.D. Gupta, K.R. Phatangare, et al., Indion 190 resin: efficient, environmentally friendly, and reusable catalyst for synthesis of benzimidazoles, benzoxazoles, and benzothiazoles, Green Chem. Lett. Rev. 5 (2012) 139-145.

  • 加载中
    1. [1]

      Yi-Fan WangHao-Yun YuHao XuYa-Jie WangXiaodi YangYu-Hui WangPing TianGuo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520

    2. [2]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    3. [3]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    4. [4]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    5. [5]

      Shuai ZhuMingjie ChenHaichao ShenHanming DingWenbo LiJunliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879

    6. [6]

      Hongliang ZengYuan JiJinfeng WenXu LiTingting ZhengQiu JiangChuan Xia . Pt nanocluster-catalyzed hydrogen evolution reaction: Recent advances and future outlook. Chinese Chemical Letters, 2025, 36(3): 109686-. doi: 10.1016/j.cclet.2024.109686

    7. [7]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    8. [8]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    9. [9]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    10. [10]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

    11. [11]

      Tiantian LongHongmei LuoJingbo SunFengniu LuYi ChenDong XuZhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728

    12. [12]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    13. [13]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    14. [14]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    15. [15]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    16. [16]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    17. [17]

      Zhuwen WeiJiayan ChenCongzhen XieYang ChenShifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677

    18. [18]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

    19. [19]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    20. [20]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

Metrics
  • PDF Downloads(0)
  • Abstract views(711)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return