Citation: Hong-Xing Zhang, Ren-Bo Wei, Chuan-Zhi Chen, Xin-Lin Tuo, Xiao-Gong Wang. A novel fluorescent epoxy resin for organophosphate pesticide detection[J]. Chinese Chemical Letters, ;2015, 26(1): 39-42. doi: 10.1016/j.cclet.2014.10.014 shu

A novel fluorescent epoxy resin for organophosphate pesticide detection

  • Corresponding author: Xiao-Gong Wang, 
  • Received Date: 18 August 2014
    Available Online: 29 September 2014

    Fund Project: Financial supports from the Research Foundation of the General Armament Department (No. 2008 CD 012) are gratefully acknowledged. (No. 2008 CD 012)

  • In this work, a novel bisbenzimidazolylpyridine-functionalized fluorescent epoxy resin was synthesized for organophosphate pesticide detection. The epoxy resin was characterized by Fourier-transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy (1H NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC) and fluorescence spectroscopy. After loading with Eu(Ⅲ) ions, the epoxy resin showed a strong fluorescence emission. The fluorescence emission was observed to be instantaneously quenched when exposed to trace amount of diethyl chlorophosphate in solution. The Stern-Volmer quenching constants Ksv for quenching at 617 nm was determined to be 0.377×103 L/mol. This sensitive emission-quenching function and easy processing nature of the polymeric support enable the resin to be a promising chemosensor candidate for the detection of organophosphates.
  • 加载中
    1. [1]

      [1] F. Ariese, W.H.O. Ernst, D.T.H.M. Sijm, Natural and synthetic organic compounds in the environment - a symposium report, Environ. Toxicol. Pharmacol. 10 (2001) 65-80.

    2. [2]

      [2] C.H. Gunderson, C.R. Lehmann, F.R. Sidell, B. Jabbari, Nerve agents: a review, Neurology 42 (1992) 946-950.

    3. [3]

      [3] S. Bencic-Nagale, T. Sternfeld, D.R. Walt, Microbead chemical switches: an approach to detection of reactive organophosphate chemical warfare agent vapors, J. Am. Chem. Soc. 128 (2006) 5041-5048.

    4. [4]

      [4] A. Barba-Bon, A.M. Costero, S. Gil, A. Harriman, F. Sancenón, Highly selective detection of nerve-agent simulants with BODIPY dyes, Chem. Eur. J. 20 (2014) 1-10.

    5. [5]

      [5] R. Subramaniam, C. Astot, L. Juhlin, C. Nilsson, A. Ostin, Direct derivatization and rapid GC-MS screening of nerve agent markers in aqueous samples, Anal. Chem. 82 (2010) 7452-7459.

    6. [6]

      [6] M.S. Nieuwenhuizen, J.L.N. Harteveld, Studies on a surface acoustic wave (SAW) dosimeter sensor for organophosphorous nerve agents, Sens. Actuators B 40 (1997) 167-173.

    7. [7]

      [7] Q.Q. Li, Y.P. Du, Y. Xu, et al., Rapid and sensitive detection of pesticides by surfaceenhanced Raman spectroscopy technique based on glycidyl methacrylate-ethylene dimethacrylate (GMA-EDMA) porous material, Chin. Chem. Lett. 24 (2013) 332-334.

    8. [8]

      [8] O.S. Wolfbeis, Fiber-optic chemical sensors and biosensors, Anal. Chem. 76 (2004) 3269-3284.

    9. [9]

      [9] K. Chulvi, P. Gaviña, A.M. Costero, et al., Discrimination of nerve gases mimics and other organophosphorous derivatives in gas phase using a colorimetric probe array, Chem. Commun. 48 (2012) 10105-10107.

    10. [10]

      [10] J. Lee, S. Seo, J. Kim, Colorimetric detection of warfare gases by polydiacetylenes toward equipment-free detection, Adv. Funct. Mater. 22 (2012) 1632-1638.

    11. [11]

      [11] S. Royo, R. Martínez-Máñez, F. Sancenón, et al., Chromogenic and fluorogenic reagents for chemical warfare nerve agents' detection, Chem. Commun. 46 (2007) 4839-4847.

    12. [12]

      [12] I. Walton, M. Davis, L. Munro, et al., A fluorescent dipyrrinone oxime for the detection of pesticides and other organophosphates, Org. Lett. 14 (2012) 2686-2689.

    13. [13]

      [13] S.W. Zhang, T.M. Swager, Fluorescent detection of chemical warfare agents: functional group specific ratiometric chemosensors, J. Am. Chem. Soc. 125 (2003) 3420-3421.

    14. [14]

      [14] D. Knapton, M. Burnworth, S.J. Rowan, C. Weder, Fluorescent organometallic sensors for the detection of chemical-warfare-agent mimics, Angew. Chem. Int. Ed. 45 (2006) 5825-5829.

    15. [15]

      [15] T.J. Dale, J.J. Rebek, Fluorescent sensors for organophosphorus nerve agent mimics, J. Am. Chem. Soc. 128 (2006) 4500-4501.

    16. [16]

      [16] Y.C. Bai, C. Zhang, C.H. Xu, C.H. Yan, Fluorescent molecular probes for the detection of chemical warfare agents and their mimics, Front. Chem. Chin. 5 (2010) 123-133.

    17. [17]

      [17] M. Burnworth, S.J. Rowan, C. Weder, Fluorescent sensors for the detection of chemical warfare agents, Chem. Eur. J. 13 (2007) 7828-7836.

    18. [18]

      [18] H.X. Zhang, X.F. Hua, X.L. Tuo, X.G. Wang, Synthesis and fluorescent properties of a novel europium(Ⅲ) complex with terpyridine-capped poly(ethylene glycol), J. Rare Earths 30 (2012) 705-708.

    19. [19]

      [19] S. Sarkar, A. Mondal, A.K. Tiwari, R. Shunmugam, Unique emission from norbornene derived terpyridine-a selective chemodosimeter for G-type nerve agent surrogates, Chem. Commun. 48 (2012) 4223-4225.

    20. [20]

      [20] H.X. Zhang, X.F. Hua, X.L. Tuo, et al., Polymer microsphere-based lanthanide luminescent chemosensor for detection of organophosphate pesticides, J. Rare Earths 30 (2012) 1203-1207.

    21. [21]

      [21] R. Shunmugam, G.N. Tew, Terpyridine-lanthanide complexes respond to fluorophosphate containing nerve gas G-agent surrogates, Chem. Eur. J. 14 (2008) 5409-5412.

    22. [22]

      [22] J.B. Beck, S.J. Rowan, Metal-ligand induced supramolecular polymerization: a route to responsive materials, Faraday Dis. 128 (2005) 43-53.

    23. [23]

      [23] X.G. Wang, K. Yang, J. Kumar, et al., Heteroaromatic chromophore functionalized epoxy-based nonlinear optical polymers, Macromolecules 31 (1998) 4126-4134.

  • 加载中
    1. [1]

      Zhaoru ChenXiaoxu LiuHaonan ChenJialong LiXiaofeng WangJianfeng Zhu . Application of epoxy resin in cultural relics protection. Chinese Chemical Letters, 2024, 35(4): 109194-. doi: 10.1016/j.cclet.2023.109194

    2. [2]

      Junqing WuYiyang ZhangQingqing HongHui YangLifeng ZhangMing ZhangLei Yu . Organometallic modification of silica with europium endowing the fluorescence properties: The key technique for numerical quality monitoring. Chinese Chemical Letters, 2025, 36(4): 110165-. doi: 10.1016/j.cclet.2024.110165

    3. [3]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    4. [4]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    5. [5]

      Chunhui ZhangJie WangJieyang ZhanRunmin YangGuanggang GaoJiayuan ZhangLinlin FanMengqi WangHong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719

    6. [6]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    7. [7]

      Dongmei YaoJunsheng ZhengLiming JinXiaomin MengZize ZhanRunlin FanCong FengPingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382

    8. [8]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    9. [9]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    10. [10]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    11. [11]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    12. [12]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    13. [13]

      Ya-Ping LiuZhi-Rong GuiZhen-Wen ZhangSai-Kang WangWei LangYanzhu LiuQian-Yong Cao . A phenylphenthiazide anchored Tb(Ⅲ)-cyclen complex for fluorescent turn-on sensing of ClO. Chinese Chemical Letters, 2025, 36(2): 109769-. doi: 10.1016/j.cclet.2024.109769

    14. [14]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    15. [15]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    16. [16]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    17. [17]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    18. [18]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    19. [19]

      Ziyou ZhangTe JiHongliang DongZhiqiang ChenZhi Su . Effect of coordination restriction on pressure-induced fluorescence evolution. Chinese Chemical Letters, 2024, 35(12): 109542-. doi: 10.1016/j.cclet.2024.109542

    20. [20]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

Metrics
  • PDF Downloads(0)
  • Abstract views(647)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return