Citation: Bahareh Tamaddoni Jahromi, Ali Nemati Kharat, Sara Zamanian. Chiral electron deficient ruthenium helical coordination polymer as a catalyst for the epoxidation of substituted styrenes[J]. Chinese Chemical Letters, ;2015, 26(1): 137-140. doi: 10.1016/j.cclet.2014.10.013 shu

Chiral electron deficient ruthenium helical coordination polymer as a catalyst for the epoxidation of substituted styrenes

  • Corresponding author: Ali Nemati Kharat, 
  • Received Date: 23 June 2014
    Available Online: 9 October 2014

  • An air and moisture stable ruthenium(Ⅲ) formate complex [Ru(HCO2)Cl2]n has been synthesized and examined in the epoxidation of substituted styrenes. X-ray crystallographic data of this complex were determined and showed that the formate ligand coordinates to the ruthenium centers in μ2-η2 fashion (syn, syn). Its asymmetric unit contains one Ru(Ⅲ) ion together with the half of a formate ligand and one chloride anion, which are bridged between the metal centers, forming a 1-D chain coordination polymer. This electron deficient helical coordination polymer was employed in the epoxidation of parafluorostyrene, affording the epoxide product in 92% yield. Natural chirality of this coordination polymer is applicable in asymmetric epoxidation reactions.
  • 加载中
    1. [1]

      [1] H. Ogino, Synthesis of silylene and silyl(silylene)metal complexes, Chem. Rec. 2 (2002) 291-306.

    2. [2]

      [2] X. Zhang, A. Fried, S. Knapp, A.S. Goldman, Novel synthesis of enamines by iridium-catalyzed dehydrogenation of tertiary amines, Chem. Commun. (2003) 2060-2061.

    3. [3]

      [3] U. Christmann, R. Vilar, Monoligated palladium species as catalysts in crosscoupling reactions, Angew. Chem. Int. Ed. 44 (2005) 366-374.

    4. [4]

      [4] R. Dorta, R. Goikhman, D. Milstein, Reactivity of [Ir(COE)2(solvent)2]PF6 complexes toward alkylphosphines: room-temperature C-H activation (cyclometalation) and isolation of a 14-electron alkyl-iridium(Ⅲ) complex, Organometallics 22 (2003) 2806-2809.

    5. [5]

      [5] P.A. van der Schaaf, R. Kollya, A. Hafner, A 14-electron ruthenium hydride: the key intermediate in the synthesis of ruthenium carbene complexes; X-ray structure of[RuHCl(PPr3i)2], Chem. Commun. (2000) 1045-1046.

    6. [6]

      [6] C.S. Yi, D.W. Lee, Z.J. He, Acid-promoted homogeneous hydrogenation of alkenes catalyzed by the ruthenium-hydride complex (PCy3)2(CO)(Cl)RuH: evidence for the formation of 14-electron species from the selective entrapment of the phosphine ligand, Organometallics 19 (2000) 2909-2915.

    7. [7]

      [7] A.C. Sykes, P. White, M. Brookhart, Reactions of anilines and benzamides with a 14-electron iridium(I) bis(phosphinite) complex: N-H oxidative addition versus Lewis base coordination, Organometallics 25 (2006) 1664-1675.

    8. [8]

      [8] C. Watanabe, T. Iwamoto, C. Kabuto, M. Kira, Fourteen-electron bis(dialkylsilylene) palladium and twelve-electron bis(dialkylsilyl)palladium complexes, Angew. Chem. Int. 47 (2008) 5386-5389.

    9. [9]

      [9] H. Hashimoto, Y. Sekiguchi, T. Iwamoto, C. Kabuto, M. Kira, Synthesis and X-ray structure of a platinum η2-disilene complex, Organometallics 21 (2002) 454-456.

    10. [10]

      [10] A.J. Schultz, J.M. Williams, R.R. Schrock, G.A. Rupprecht, J.D. Fellmann, Interaction of hydrogen and hydrocarbons with transition metals. Neutron diffraction evidence for an activated carbon-hydrogen bond in an electron-deficient tantalum- neopentylidene complex, J. Am. Chem. Soc. 101 (1979) 1593-1595.

    11. [11]

      [11] D.H. Berry, J.H. Chey, H.S. Zipin, P.J. Carroll, Reactivity of molybdenum and tungsten disilene complexes, Polyhedron 10 (1991) 1189-1201.

    12. [12]

      [12] D.H. Berry, J.H. Chey, H.S. Zipin, P.J. Carroll, Disilene complexes of molybdenum and tungsten, J. Am. Chem. Soc. 112 (1990) 452-453.

    13. [13]

      [13] K.R. Grünwald, G. Saischek, M. Volpe, N.C. Mösch-Zanetti, Mechanistic insight into olefin epoxidation catalyzed by rhenium(v) oxo complexes that contain pyridazine- based ligands, Inorg. Chem. 50 (2011) 7162-7171.

    14. [14]

      [14] A. Schröckeneder, P. Traar, G. Raber, et al., Oxorhenium(V) complexes with ketiminato ligands: coordination chemistry and epoxidation of cyclooctene, Inorg. Chem. 48 (2009) 11608-11614.

    15. [15]

      [15] A. Jimtaisong, R.L. Luck, Synthesis and catalytic epoxidation activity with TBHP and H2O2 of dioxo-, oxoperoxo-, and oxodiperoxomolybdenum(VI) and tungsten( VI) compounds containing monodentate or bidentatephosphine oxide ligands: crystal structures of WCl2(O)2(OPMePh2)2, WCl2(O)(O2)(OPMePh2)2, MoCl2(O)2dppmO2 C4H10O, WCl2(O)2dppmO2, Mo(O)(O2)2dppmO2, and W(O)(O2)2dppmO2, Inorg. Chem. 45 (2006) 10391-10402.

    16. [16]

      [16] R. Zhang, W.Y. Yu, K.Y. Wong, C.M. Che, Highly efficient asymmetric epoxidation of alkenes with a D4-symmetric chiral dichlororuthenium(IV) porphyrincatalyst, J. Org. Chem. 66 (2001) 8145-8153.

    17. [17]

      [17] S. Bhor, M.K. Tse, M. Klawonn, C. Dobler, M. Beller, Ruthenium-catalyzed asymmetric alkene epoxidation with tert-butyl hydroperoxide as oxidant, Adv. Synth. Catal. 346 (2004) 263-267.

    18. [18]

      [18] R.I. Kureshy, N.H. Khan, S.H.R. Abdi, Enantioselective catalytic epoxidation of styrenes by iodosylbenzene using chiral ruthenium(Ⅱ) schiff base complexes, J. Mol. Catal. A: Chem. 96 (1995) 117-122.

    19. [19]

      [19] R.I. Kureshy, N.H. Khan, S.H.R. Abdi, A.K. Bhatt, Asymmetric catalytic epoxidation of styrene by dissymmetric Mn(iii) and Ru(iii) chiral schiff base complexes synthesis and physicochemical studies, J. Mol. Catal. A: Chem. 110 (1996) 33-40.

    20. [20]

      [20] T. Takeda, R. Irie, Y. Shinoda, T. Katsuki, Ru-salen catalyzed asymmetric epoxidation: photoactivation of catalytic activity, Synlett 7 (1999) 1157-1159.

    21. [21]

      [21] C. Stoe, X-STEP32 Version 1.07b: Crystallographic package, GmbH, Darmstadt, Germany, 2000.

    22. [22]

      [22] A. Altomare, G. Cascarano, C. Giacovazzo, et al., A program for automatic solution of crystal structures by direct methods optimized for powder data, J. Appl. Cryst. 27 (1994) 435-436.

    23. [23]

      [23] G.M. Sheldrick, University of Gottingen, Germany, 2008.

    24. [24]

      [24] O.B. Deacon, R.J. Phillips, Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination, Coord. Chem. Rev. 33 (1980) 227-250.

    25. [25]

      [25] C. Yin, G.C. Huang, C. KuoKuo, et al., Extended metal-atom chains with an inert second row transition metal: [Ru55-tpda)4X2] (tpda2- = tripyridyldiamidotripyridyldiamidodianion, X = Cl and NCS), J. Am. Chem. Soc. 130 (2008) 10090-10092.

    26. [26]

      [26] J. Hine, Carbon dichloride as an intermediate in the basic hydrolysis of chloroform. A mechanism for substitution reactions at a saturated carbon atom, J. Am. Chem. Soc. 72 (1950) 2438-2445.

  • 加载中
    1. [1]

      Cong GaoZijian ZhuSiwei LiZheng XiQingqing SunJie HanRong Guo . Chiral supramolecular catalysts of helical nanoribbon: More twist, higher enantioselectivity. Chinese Chemical Letters, 2025, 36(3): 109968-. doi: 10.1016/j.cclet.2024.109968

    2. [2]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    3. [3]

      Ming-Zhen LiYang ZhangKun LiYa-Nan ShangYi-Zhen ZhangYu-Jiao KanZhi-Yang JiaoYu-Yuan HanXiao-Qiang CaoIn situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885

    4. [4]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    5. [5]

      Yu-Yao LiXiao-Hui LiZhi-Xuan AnYang ChuXiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716

    6. [6]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    7. [7]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    8. [8]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    9. [9]

      Panke ZhouHong YuMun Yin CheeTao ZengTianli JinHongling YuShuo WuWen Siang LewXiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279

    10. [10]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    11. [11]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    12. [12]

      Jing RENRuikui YANXiaoli CHENHuali CUIHua YANGJijiang WANG . Synthesis and fluorescence sensing of a highly sensitive and multi-response cadmium coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 574-586. doi: 10.11862/CJIC.20240287

    13. [13]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    14. [14]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    15. [15]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    16. [16]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    17. [17]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    18. [18]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    19. [19]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    20. [20]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

Metrics
  • PDF Downloads(0)
  • Abstract views(719)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return