Citation: Yu-Gang Sun, Tu T. Truong, Yu-Zi Liu, Yong-Xing Hu. Encapsulation of superparamagnetic Fe3O4@SiO2 core/shell nanoparticles in MnO2 microflowers with high surface areas[J]. Chinese Chemical Letters, ;2015, 26(2): 233-237. doi: 10.1016/j.cclet.2014.10.012 shu

Encapsulation of superparamagnetic Fe3O4@SiO2 core/shell nanoparticles in MnO2 microflowers with high surface areas

  • Corresponding author: Yu-Gang Sun, 
  • Received Date: 1 September 2014
    Available Online: 29 September 2014

    Fund Project:

  • Microflowers made of interconnected MnO2 nanosheets have been successfully synthesized in a microwave reactor through a hydrothermal reduction of KMnO4 with aqueous HCl at elevated temperatures in the presence of superparamagnetic Fe3O4@SiO2 core-shell nanoparticles. Due to the chemical compatibility between SiO2 and MnO2, the heterogeneous reaction leads to the spontaneous encapsulation of the Fe3O4@SiO2 core-shell nanoparticles in the MnO2 microflowers. The resulting hybrid particles exhibit multiple properties including high surface area associated with the MnO2 nanosheets and superparamagnetism originated from the Fe3O4@SiO2 core-shell nanoparticles, which are beneficial for applications requiring both high surface area and magnetic separation.
  • 加载中
    1. [1]

      [1] J. Fei, Y. Cui, X. Yan, et al., Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment, Adv. Mater. 20 (2008) 452-456.

    2. [2]

      [2] H. Chen, J. He, Facile synthesis and monodisperse manganese oxide nanostructures and their application in water treatment, J. Phys. Chem. C 112 (2008) 17540-17545.

    3. [3]

      [3] Y. Zhai, J. Zhai, M. Zhou, S. Dong, Ordered magnetic core-manganese oxide shell nanostructures and their application in water treatment, J. Mater. Chem. 19 (2009) 7030-7035.

    4. [4]

      [4] A.A. Pandit, R.A. Pawar, D.R. Shinde, Colloidal MnO2 catalysed degradation of two azo dyes methyl red and methyl orange from aqueous medium, Int. J. Sci. Eng. Res. 4 (2013) 1119-1122.

    5. [5]

      [5] H. Huang, S. Sithambaram, C.H. Chen, et al., Microwave-assisted hydrothermal synthesis of cryptomelane-type octahedral molecular sieves (OMS-2) and their catalytic studies, Chem. Mater. 22 (2010) 3664-3669.

    6. [6]

      [6] Z. Ai, L. Zhang, F. Kong, et al., Microwave-assisted green synthesis of MnO2 nanoplates with environmental catalytic activity, Mater. Chem. Phys. 111 (2008) 162-167.

    7. [7]

      [7] X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors, Nat. Nanotechnol. 6 (2011) 232-236.

    8. [8]

      [8] M.M. Thackeray, Manganese oxides for lithium batteries, Prog. Solid State Chem. 25 (1997) 1-71.

    9. [9]

      [9] W. Wei, X. Cui, W. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes, Chem. Soc. Rev. 40 (2011) 1697-1721.

    10. [10]

      [10] S. Devaraj, N. Munichandraiah, Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties, J. Phys. Chem. C 112 (2008) 4406-4417.

    11. [11]

      [11] T. Brousse, M. Toupin, R. Dugas, et al., Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors, J. Electrochem. Soc. 153 (2006) A2171-A2180.

    12. [12]

      [12] X.L. Wang, A.B. Yuan, Y.Q. Wang, Supercapacitive behaviors and their temperature dependence of sol-gel synthesized nanostructured manganese dioxide in lithium hydroxide electrolyte, J. Power Sources 172 (2007) 1007-1011.

    13. [13]

      [13] G.H. Qiu, H. Huang, S. Dharmarathna, et al., Hydrothermal synthesis of manganese oxide nanomaterials and their catalytic and electrochemical properties, Chem. Mater. 23 (2011) 3892-3901.

    14. [14]

      [14] T.T. Truong, Y. Liu, Y. Ren, L. Trahey, Y. Sun, Morphological and crystalline evolution of nanostructured MnO2 and its application in lithium-air batteries, ACS Nano 6 (2012) 8067-8077.

    15. [15]

      [15] D. Dallinger, C.O. Kappe, Microwave-assisted synthesis in water as solvent, Chem. Rev. 107 (2007) 2563-2591.

    16. [16]

      [16] Y.J. Zhu, F. Chen, Microwave-assisted preparation of inorganic nanostructures in liquid phase, Chem. Rev. 114 (2014) 6462-6555.

    17. [17]

      [17] J. Ge, Y. Hu, M. Biasini, W.P. Beyermann, Y. Yin, Superparamagnetic magnetite colloidal nanocrystal clusters, Angew. Chem. Int. Ed. 46 (2007) 4342-4345.

    18. [18]

      [18] Y. Hu, Y. Sun, Stable magnetic hot spots for simultaneous concentration and ultrasensitive SERS detection of solution analytes, J. Phys. Chem. C 116 (2012) 13329-13335.

    19. [19]

      [19] Y. Hu, Y. Sun, A generic approach for the synthesis of dimer nanoclusters and asymmetric nanoassemblies, J. Am. Chem. Soc. 135 (2013) 2213-2221.

    20. [20]

      [20] Y. Hu, Z. Li, Y. Sun, Enhanced photocatalysis by hybrid hierarchical assembly of plasmonic nanocrystals with high surface areas, Catal. Today 225 (2014) 177-184.

    21. [21]

      [21] Y. Hu, Y. Liu, Z. Li, Y. Sun, Highly asymmetric, interfaced dimers made of Au nanoparticles and bimetallic nanoshells: synthesis and photo-enhanced catalysis, Adv. Funct. Mater. 24 (2014) 2828-2836.

    22. [22]

      [22] Y.G. Sun, L. Wang, Y. Liu, Y. Ren, Birnessite-type MnO2 nanosheets with layered structures under high pressure: elimination of crystalline stacking faults and oriented laminar assembly, Small 10 (2014), http://dx.doi.org/10.1002/ smll.201400892.

    23. [23]

      [23] Y. Sun, Y. Liu, T.T. Truong, Y. Ren, Thermal transformation of d-MnO2 nanoflowers studied by in-situ TEM, Sci. China Chem. 55 (2012) 2346-2352.

  • 加载中
    1. [1]

      Juanjuan WangFang WangBin QinYue WuHuan YangXiaolong LiLanfang WangXiufang QinXiaohong Xu . Controlled synthesis and excellent magnetism of ferrimagnetic NiFe2Se4 nanostructures. Chinese Chemical Letters, 2024, 35(11): 109449-. doi: 10.1016/j.cclet.2023.109449

    2. [2]

      Ningxiang Wu Huaping Zhao Yong Lei . Nanomaterials with highly ordered nanostructures: Definition, influence and future challenge. Chinese Journal of Structural Chemistry, 2024, 43(11): 100392-100392. doi: 10.1016/j.cjsc.2024.100392

    3. [3]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    4. [4]

      Hao-Fei NiJia-He LinGele TeriQiang-Qiang JiaPei-Zhi HuangHai-Feng LuChang-Feng WangZhi-Xu ZhangDa-Wei FuYi Zhang . B-site ion regulation strategy enables performance optimization and multifunctional integration of hybrid perovskite ferroelectrics. Chinese Chemical Letters, 2025, 36(3): 109690-. doi: 10.1016/j.cclet.2024.109690

    5. [5]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    6. [6]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    7. [7]

      Jiahao LiuPeng LiuJunhong DuanQiongxuan XieJie FengHongpei TanZe MiYing LiYunjie LiaoPengfei RongWenhu ZhouXiang Gao . Macrophages-mediated tumor accumulation and deep penetration of bismuth/manganese biomineralized nanoparticles for enhanced radiotherapy. Chinese Chemical Letters, 2024, 35(12): 109632-. doi: 10.1016/j.cclet.2024.109632

    8. [8]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

    9. [9]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    10. [10]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    11. [11]

      Yang LiXiaoxu LiuTianyi JiMan ZhangXueru YanMengjie YaoDawei ShengShaodong LiPeipei RenZexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551

    12. [12]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    13. [13]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    14. [14]

      Yan FanJiao TanCuijuan ZouXuliang HuXing FengXin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101

    15. [15]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    16. [16]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    17. [17]

      Lu DaiYuxin RenShuang LiMeidi WangChentao HuYa-Pan WuGuangtong HaiDong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774

    18. [18]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    19. [19]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    20. [20]

      Zikang HuHengjie ZhangZhengqiu LiTianbao ZhaoZhipeng GuQijuan YuanBaoshu Chen . Multifunctional photothermal hydrogels: Design principles, various functions, and promising biological applications. Chinese Chemical Letters, 2024, 35(10): 109527-. doi: 10.1016/j.cclet.2024.109527

Metrics
  • PDF Downloads(0)
  • Abstract views(732)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return