Citation: Shahnaz Rostamizadeh, Masoomeh Nojavan, Reza Aryan. Synthesis of N2-arylaminopyrimidine-5-carbonitrile derivatives via SNAr amination reaction[J]. Chinese Chemical Letters, ;2015, 26(1): 152-156. doi: 10.1016/j.cclet.2014.10.007 shu

Synthesis of N2-arylaminopyrimidine-5-carbonitrile derivatives via SNAr amination reaction

  • Corresponding author: Shahnaz Rostamizadeh, 
  • Received Date: 24 April 2014
    Available Online: 31 July 2014

  • An efficient and high-yielding synthesis of N2-arylaminopyrimidine-5-carbonitrile derivatives starting from arylamines and 2-methylthio-pyrimidine-5-carbonitrile derivatives has been developed in the presence of cesium carbonate as basic reagent. This new protocol showed high chemical tolerance for a range of functional groups, and only the methylthio substituent on C2 of the pyrimidine ring was replaced with arylamine derivatives under the reaction conditions.
  • 加载中
    1. [1]

      [1] R. Capdeville, E. Buchdunger, J. Zimmermann, et al., Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug, Nat. Rev. Drug Discov. 1 (2002) 493-502.

    2. [2]

      [2] Z. Lin, F. Junhua, C. Jer-Hong, et al., Design, synthesis, and biological evaluation of pyrazolopyrimidine-sulfonamides as potent multiple-mitotic kinase (MMK) inhibitors (Part I), Bioorg. Med. Chem. Lett. 21 (2011) 5633-5637.

    3. [3]

      [3] L.A. McDermott, M. Simcox, B. Higgins, et al., RO4383596, an orally active KDR, FGFR, and PDGFR inhibitor: synthesis and biological evaluation, Bioorg. Med. Chem. 13 (2005) 4835-4841.

    4. [4]

      [4] M. Sabat, J.C. VanRens, T.A. Brugel, et al., The development of novel 1,2-dihydropyrimido[ 4,5-c]pyridazine based inhibitors of lymphocyte specific kinase (Lck), Bioorg. Med. Chem. Lett. 16 (2006) 4257-4261.

    5. [5]

      [5] U.J. Heye, J. Speich, H. Siegle, et al., CGA 219417: a novel broad-spectrum fungicide, Crop Prot. 13 (1994) 541-549.

    6. [6]

      [6] L.B. Johnson, L.D. Saravolatz, Etravirine, a next-generation nonnucleoside reversetranscriptase inhibitor, Clin. Infect. Dis. 48 (2009) 1123-1128.

    7. [7]

      [7] X.Q. Feng, Y.H. Liang, Z.S. Zeng, et al., Structural modifications of DAPY analogues with potent anti-HIV-1 activity, Chem. Med. Chem. 4 (2009) 219-224.

    8. [8]

      [8] J.F. Hartwig, Approaches to catalyst discovery. New carbon-heteroatom and carbon-carbon bond formation, Pure Appl. Chem. 71 (1999) 1417-1423.

    9. [9]

      [9] A.R. Muci, S.L. Buchwald, Practical palladium catalysts for C-N and C-O bond formation, Top. Curr. Chem. 219 (2002) 131-209.

    10. [10]

      [10] J.F. Hartwig, Carbon-heteroatom bond-forming reductive eliminations of amines, ethers, and sulfides, Acc. Chem. Res. 31 (1998) 852-860.

    11. [11]

      [11] J.F. Hartwig, Transition metal catalyzed synthesis of arylamines and aryl ethers from aryl halides and triflates: scope and mechanism, Angew. Chem. Int. Ed. 37 (1998) 2046-2067.

    12. [12]

      [12] D.S. Surry, S.L. Buchwald, Biaryl phosphane ligands in palladium-catalyzed amination, Angew. Chem. Int. Ed. 47 (2008) 6338-6361.

    13. [13]

      [13] S.N. VanderWel, P.J. Harvey, D.J. McNamara, et al., Pyrido[2,3-d]pyrimidin-7-ones as specific inhibitors of cyclin-dependent kinase 4, J. Med. Chem. 48 (2005) 2371- 2387.

    14. [14]

      [14] K.L. Sayle, J. Bentley, F.T. Boyle, et al., Structure-based design of 2-arylamino-4- cyclohexylmethyl-5-nitroso-6-aminopyrimidine inhibitors of cyclin-dependent kinases 1 and 2, Bioorg. Med. Chem. Lett. 13 (2003) 3079-3082.

    15. [15]

      [15] M.L. Maddess, R. Carter, SNAr reactions of 2-methylthio-4-pyrimidinones in pivalic acid: access to functionalized pyrimidinones and pyrimidines, Synthesis 44 (2012) 1109-1118.

    16. [16]

      [16] J. Spychala, A facile preparation N2-arylisocytosines, Synth. Commun. 27 (1997) 1943-1949.

    17. [17]

      [17] M. Barvian, D.H. Boschelli, J. Cossrow, et al., Pyrido[2,3-d]pyrimidin-7-one inhibitors of cyclin-dependent kinases, J. Med. Chem. 43 (2000) 4606-4616.

    18. [18]

      [18] J. Spychala, K. Golankiewicz, The efficient method of synthesis of 4-N-arylcytosines, Synth. Commun. 20 (1990) 1899-1904.

    19. [19]

      [19] B. Sreedhar, P.S. Reddy, M.A. Reddy, Catalyst-free and base-free waterpromoted SNAr reaction of heteroaryl halides with thiols, Synthesis 10 (2009) 1732-1738.

    20. [20]

      [20] R.A. Altman, S.L. Buchwald, Cu-catalyzed Goldberg and Ullmann reactions of aryl halides using chelating N- and O-based ligands, Nat. Protoc. 2 (2007) 2474- 2479.

    21. [21]

      [21] Y. Liu, Y. Bai, J. Zhang, et al., Optimization of the conditions for coppermediated N-arylation of heteroarylamines, Eur. J. Org. Chem. (2007) 6084- 6088.

    22. [22]

      [22] J.H.M. Lange, L.J.F. Hofmeyer, F.A.S. Hout, et al., Microwave-enhanced Goldberg reaction: a novel route to N-arylpiperazinones and N-arylpiperazinediones, Tetrahedron Lett. 43 (2002) 1101-1104.

    23. [23]

      [23] J. Ahmadi, S. Sadjadi, M. Hosseinpour, Granulated copper oxide nano-catalyst: a novel and efficient catalyst for C-N cross-coupling of amines with iodobenzene, Monatsh. Chem. 142 (2011) 801-806.

    24. [24]

      [24] L. Pellegatti, E. Vedrenne, J.M. Leger, et al., First efficient palladium-catalyzed aminations of pyrimidines, 1,2,4-triazines and tetrazines by original methyl sulfur release, Synlett 13 (2009) 2137-2142.

    25. [25]

      [25] Sh. Rostamizadeh, M. Nojavan, An environmentally benign multicomponent synthesis of some novel 2-methylthio pyrimidine derivatives using MCM-41- NH2 as nanoreactor and nanocatalyst, J. Heterocycl. Chem. 51 (2014) 418-422.

    26. [26]

      [26] C.F. Bernasconi, M.C. Muller, P. Schmid, Intermediates in nucleophilic aromatic substitution. 20. Rate-limiting proton transfer in the formation of Meisenheimer complexes between 1,3,5-trinitrobenzene and amines. The effect of dimethyl sulfoxide on proton-transfer rates. Relative leaving-group abilities of amines and alkoxide ions, J. Org. Chem. 44 (1979) 3189-3196.

    27. [27]

      [27] I. Gallardo, G. Guirado, J. Marquet, Nucleophilic aromatic substitution for heteroatoms: an oxidative electrochemical approach, J. Org. Chem. 67 (2002) 2548-2555.

    28. [28]

      [28] T. Flessner, S. Doye, Cesium carbonate: a powerful inorganic base in organic synthesis, J. Prakt. Chem. 341 (1999) 186-190.

  • 加载中
    1. [1]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    2. [2]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    3. [3]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    4. [4]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    5. [5]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    6. [6]

      Fangwen Peng Zhen Luo Yingjin Ma Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273

    7. [7]

      Ke ZhangYajing WeiLinhua XieSha KangFei LiChuanyi Wang . Amorphous titanium carbide on N-defective g-C3N5 for high-efficiency photocatalytic NO removal. Chinese Chemical Letters, 2025, 36(3): 110086-. doi: 10.1016/j.cclet.2024.110086

    8. [8]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    9. [9]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

    10. [10]

      Zhuwen WeiJiayan ChenCongzhen XieYang ChenShifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677

    11. [11]

      Fei-Yan GaoYan WuLing YangZhong-Yi MaYi ChenXiao-Man MaoXu-Fei BianPei TangChong Li . Orally delivered berberine derivatives for dual therapy in diabetic complications with MRSA infections. Chinese Chemical Letters, 2025, 36(4): 109917-. doi: 10.1016/j.cclet.2024.109917

    12. [12]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    13. [13]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    14. [14]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    15. [15]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    16. [16]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    17. [17]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    18. [18]

      Yan GuoHongtao BianLe YuJiani MaYu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971

    19. [19]

      Shuying LiWeiwei ZhuGeXuan SunChongzhen SunZhaojun LiuChenghe XiongMin XiaoGuofeng Gu . Convergent synthesis and immunological study of oligosaccharide derivatives related to galactomannan from Antrodia cinnamomea. Chinese Chemical Letters, 2024, 35(5): 109089-. doi: 10.1016/j.cclet.2023.109089

    20. [20]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

Metrics
  • PDF Downloads(0)
  • Abstract views(640)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return