Citation: Isao Noda. Recent developments in two-dimensional (2D) correlation spectroscopy[J]. Chinese Chemical Letters, ;2015, 26(2): 167-172. doi: 10.1016/j.cclet.2014.10.006 shu

Recent developments in two-dimensional (2D) correlation spectroscopy

  • Received Date: 8 August 2014
    Available Online: 25 September 2014

  • Recent noteworthy developments in the field of two-dimensional (2D) correlation spectroscopy are reviewed. 2D correlation spectroscopy has become a very popular tool due to its versatility and relative ease of use. The technique utilizes a spectroscopic or other analytical probe from a number of selections for a broad range of sample systems by employing different types of external perturbations to induce systematic variations in intensities of spectra. Such spectral intensity variations are then converted into 2D spectra by a form of correlation analysis for subsequent interpretation. Many different types of 2D correlation approaches have been proposed. In particular, 2D hetero-correlation and multiple perturbation correlation analyses, including orthogonal sample design scheme, are discussed in this review. Additional references to other important developments in the field of 2D correlation spectroscopy, such as projection correlation and codistribution analysis, were also provided.
  • 加载中
    1. [1]

      [1] (a) I. Noda, Two-dimensional infrared (2D IR) spectroscopy of synthetic and biopolymers, Bull. Am. Phys. Soc. 31 (1986) 520; (b) I. Noda, Two-dimensional infrared (2D IR) spectroscopy, J. Am. Chem. Soc. 111 (1989) 8116-8120; (c) I. Noda, Two-dimensional infrared (2D IR) spectroscopy: theory and applications, Appl. Spectrosc. 44 (1990) 550-561; (d) I. Noda, Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy, Appl. Spectrosc. 47 (1993) 1329-1336; (e) I. Noda, Determination of two-dimensional correlation spectra using the Hilbert transform, Appl. Spectrosc. 54 (2000) 994-999; (f) I. Noda, A.E. Dowrey, C. Marcott, G.M. Story, Y. Ozaki, Generalized two-dimensional correlation spectroscopy, Appl. Spectrosc. 54 (2000) 236A-248A; (g) I. Noda, Y. Ozaki, Two-dimensional Correlation Spectroscopy—Applications in Vibrational and Optical Spectroscopy, Wiley, Chichester, 2004.

    2. [2]

      [2] (a) I. Noda, A.E. Dowrey, C. Marcott, Recent developments in two-dimensional infrared (2D IR) correlation spectroscopy, Appl. Spectrosc. 47 (1993) 1317-1323; (b) I. Noda, Progress in 2D correlation spectroscopy, in: Y. Ozaki, I. Noda (Eds.), Two-Dimensional Correlation Spectroscopy, AIP Press, Melville, 2000, pp. 3-17; (c) I. Noda, Advances in two-dimensional correlation spectroscopy, Viv. Spectrosc. 36 (2004) 143-165; (d) I. Noda, Progress in two-dimensional (2D) correlation spectroscopy, J. Mol. Struct. 799 (2006) 2-15; (e) I. Noda, Recent advancement in the field of two-dimensional correlation spectroscopy, J. Mol. Struct. 883-884 (2008) 2-26; (f) I. Noda, Two-dimensional correlation spectroscopy—biannual survey 2007-2009, J. Mol. Struct. 974 (2010) 3-24; (g) I. Noda, Frontiers of two-dimensional correlation spectroscopy. Part 1. New concepts and noteworthy developments, J. Mol. Struct. 1069 (2014) 3-22; (h) I. Noda, Frontiers of two-dimensional correlation spectroscopy. Part 2. Perturbation methods, fields of applications, and types of analytical probes, J. Mol. Struct. 1069 (2014) 23-49.

    3. [3]

      [3] (a) I. Noda, Two-dimensional correlation approach to the dynamic rheooptical characterization of polymers, Chemtracts Macromol. Chem. 1 (1990) 89-105; (b) F.E. Barton II, D.S. Himmersbach, J.H. Duckworth, M.J. Smith, Two-dimensional vibrational spectroscopy: correlation of mid-and near-infrared regions, Appl. Spectrosc. 46 (1992) 420-429; (c) N. Katayama, M. Kondo, M. Miyazawa, Study on molecular structure and hydration mechanism of Domyouji-ko starch by IE and NIR hetero 2D analysis, J. Mol. Struct. 974 (2010) 179-182; (d) T. Nishi, T. Genkawa, M. Watari, Y. Ozaki, Selection of NIR region for a regression model of the ethanol concentration in fermentation process by an online NIR and mid-IR dual-region spectrometer and 2D heterospectral correlation spectroscopy, Anal. Sci. 28 (2012) 1165-1170; (e) H. Yamasaki, S. Morita, Epoxy curing reaction studied by using two-dimensional correlation infrared and near-infrared spectroscopy, J. Appl. Polym. Sci. 119 (2011) 871-881; (f) B.K. Via, S. Adhikari, S. Taylor, Modeling for proximate analysis and heating value of torrefied biomass with vibrational spectroscopy, Bioresour. Technol. 133 (2013) 1-8;(g) Ž. Sovová, V. Kopecký Jr., T. Pazderka, et al., Structural analysis of natural killer cell receptor protein 1 (NKR-P1) extracellular domains suggests a conserved long loop region involved in ligand specificity, J. Mol. Model. 17 (2011) 1353-1370; (h) T.R. Rudd, E.A. Yates, M. Hricovíni, Spectroscopic and theoretical approaches for the determination of heparin saccharide structure and the study of protein-glycosaminoglycan complexes in solution, Curr. Med. Chem. 16 (2009) 4750-4766; (i) H.C. Choi, S.R. Ryu, H. Ji, et al., Two-dimensional hetero-spectral correlation analysis of X-ray photoelectron spectra and infrared spectra for spin-coated films of biodegradable poly(3-hydroxubutyrate-co-3-hydroxyhexanoate) copolymers, J. Phys. Chem. B 114 (2010) 10979-10985; (j) M. Mecozzi, M. Pietroletti, V. Gallo, M.E. Conti, Formation of incubated marine mucilages investigated by FTIR and UV-vis spectroscopy and supported by twodimensional correlation analysis, Marine Chem. 116 (2009) 18-35; (k) S.R. Ryu, W.M. Bae, W.J. Hong, K.J. Ihn, Y.M. Jung, Characterization of chain transfer reaction during radical polymerization of silver nanocomposite polyvinylpyrrolidone by using 2D hetero-spectral IR/NMR correlation spectroscopy, Vib. Spectrosc. 60 (2012) 168-172; (l) D.S. Smirnova, J.A. Kornfield, D.J. Lohshe, Morphology development in model polyethylene via two-dimensional correlation analysis, Macromolecules 44 (2011) 6836-6848; (m) L. Guo, N. Spegazzini, H. Sato, et al., Multistep crystallization process involving sequential formations of density fluctuations, “intermediate structures”, and lamellar crystallites: poly(3-hydroxybutyrate) as investigated by time-resolved synchrotron SAXS and WAXD, Macromolecules 45 (2012) 313-328; (n) L.R. Whitman, K.P. Bork, Y. Tang, Two-dimensional correlation in cyclic voltammetry and electrochemical quartz crystal microbalance: a complementary tool to conventional techniques, J. Electroanal. Chem. 661 (2011) 100-105; (o) J. Andary, J. Maalouly, R. Quaini, et al., Application of 2D correlation spectroscopy on olive stones acid hydrolysates: effect of overliming, Chemom. Intell. Lab. Syst. 113 (2012) 58-67.

    4. [4]

      [4] (a) L.T. Letendre, W. McNavage, C. Pibel, D.K. Kuo, H.L. Dai, Time-resolved FTIR emission spectroscopy of transient radicals, J. Chin. Chem. Soc. 52 (2005) 677-686; (b) W. McNavage, H.L. Dai, Two-dimensional cross-spectral correlation analysis and its application to time-resolved Fourier transform emission spectra of transient radicals, J. Chem. Phys. 123 (2005) 184104; (c) F. Pi, H. Shinzawa, M.A. Czarnecki, M. Iwahashi, M. Suzuki, Y. Ozaki, Selfassembling of oleic acid (cis-9,cis-12-octadecalienoic acid) in ethanol studied by time-dependent attenuated total reflectance (ATR) infrared (IR) and two-dimensional (2D) correlation spectroscopy, J. Mol. Struct. 974 (2010) 40-45; (d) C. Marcott, G.M. Story, A.E. Dowrey, I. Noda, in: C.L. Wilkins (Ed.), Enhancement of Chemical Information through Computer-Assisted Examination of Spectral Variations, vol. 4, Computer-Enhanced Analytical Spectroscopy, Plenum, New York, 1993, pp. 237-255; (e) J. Xu, S. Cai, X. Li, J. Dong, J. Ding, Z. Chen, Statistical two-dimensional correlation spectroscopy of urine and serum from metabolomics data, Chemom. Intell. Lab. Syst. 112 (2012) 33-40.

    5. [5]

      [5] (a) Y. Wu, J.H. Jiang, Y. Ozaki, A new possibility of generalized two-dimensional correlation spectroscopy: hybrid two-dimensional correlation spectroscopy, J. Phys. Chem. A 106 (2002) 2422-2429; (b) Y. Wu, F. Meersman, Y. Ozaki, A novel application of hybrid two-dimensional correlation infrared spectroscopy: exploration of the reversibility of the pressureand temperature-induced phase separation of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide) in aqueous solution, Macromolecules 39 (2006) 1182-1188; (c) T.J. Kamerzell, C.R. Middaugh, Two-dimensional correlation spectroscopy reveals coupled immunoglobulin regions of differential flexibility that influence stability, Biochemistry 46 (2007) 9762-9773; (d) G.M. Kirwan, D.I. Fernandez, J.O. Niere, M.J. Adams, General and hybrid correlation nuclear magnetic resonance analysis of phosphorous in Phytophthora palmivora, Anal. Biochem. 429 (2012) 1-7; (e) W. Zhang, R. Liu, W. Zhang, H. Jia, K. Xu, Discussion on the validity of NIR spectral data in non-invasive blood glucose sensing, Biomed. Opt. Expr. 4 (2013) 789-803.

    6. [6]

      [6] (a) H. Shinzawa, K. Awa, T. Okumura, S. Morita, M. Otsuka, Y. Ozaki, H. Sato, Raman imaging analysis of pharmaceutical tablets by two-dimensional (2D) correlation spectroscopy, Vib. Spectrosc. 51 (2009) 125-131; (b) H. Shinzawa, S. Morita, K. Awa, et al., Multiple perturbation two-dimensional correlation analysis of cellulose by attenuated total reflection infrared spectroscopy, Appl. Spectrosc. 63 (2009) 501-506; (c) H. Shinzawa, T. Genkawa, W. Kanematsu, Pressure-induced association of oleic acid (OA) under varying temperature studied by multiple-perturbation two-dimensional (2D) IR correlation spectroscopy, J. Mol. Struct. 1028 (2012) 164-169; (d) H. Shinzawa, M. Nishida, W. Kanematsu, et al., Parallel factor (PARAFAC) kernel analysis of temperature-and composition-dependent NMR spectra of poly(lactic acid) nanocomposites, Analyst 137 (2012) 1913-1921; (e) H. Shinzawa, K. Awa, I. Noda, Y. Ozaki, Multiple-perturbation two-dimensional near-infrared correlation study of time-dependent water absorption behavior of cellulose affected by pressure, Appl. Spectrosc. 67 (2013) 163-170.

    7. [7]

      [7] (a) J. Qi, H. Li, K. Huang, et al., Orthogonal sample design scheme for twodimensional synchronous spectroscopy and its application in probing intermolecular interactions, Appl. Spectrosc. 61 (2007) 1359-1365; (b) J. Qi, K. Huang, X. Gao, et al., Orthogonal sample design scheme for twodimensional synchronous spectroscopy: application in probing lanthanide ions interactions with organic ligands in solution mixture, J. Mol. Struct. 883-884 (2008) 116-123; (c) Y. Liu, C. Zhang, S. Liu, et al., Modified orthogonal sample design scheme to probe intermolecular interactions, J. Mol. Struct. 883-884 (2008) 124-128; (d) C. Zhang, K. Huang, H. Li, et al., Double orthogonal sample design scheme and corresponding basic patterns in two-dimensional correlation spectra for probing subtle spectral variations caused by intermolecular interactions, J. Phys. Chem. A 113 (2009) 12142-12156; (e) X. Li, Q. Pan, J. Chen, et al., Asynchronous orthogonal sample design scheme for two-dimensional correlation spectroscopy (2D-COS) and its application in probing intermolecular interactions from overlapping infrared (IR) bands, Appl. Spectrosc. 65 (2011) 901-917; (f) J. Chen, Q. Bi, S. Liu, et al., Double asynchronous sample design scheme for probing intermolecular interactions, J. Phys. Chem. A 116 (2012) 10904-10916; (g) X. Li, S. Liu, J. Chen, et al., The influence of changing the sequence of concentration series on the 2D asynchronous spectroscopy generated by the asynchronous orthogonal sample design (AOSD) approach, Vib. Spectrosc. 60 (2012) 212-216; (h) X. Li, Q. Bi, S. Liu, et al., Improvement of the sensitivity of the twodimensional asynchronous spectroscopy based on the ASOD approach by using a modified reference spectrum, J. Mol. Struct. 1034 (2013) 101-111.

    8. [8]

      [8] (a) I. Noda, Projection two-dimensional correlation analysis, J. Mol. Struct. 974 (2010) 116-126; (b) L. Zhang, I. Noda, Y. Wu, Concatenated two-dimensional correlation analysis: a new possibility for generalized two-dimensional correlation spectroscopy and its application to the examination of process reversibility, Appl. Spectrosc. 64 (2010) 343-350; (c) L. Zhang, I. Noda, Y. Wu, An application of concatenated 2D correlation spectroscopy: exploration of the reversibility of the temperature-induced hydration variation of poly(N-isopropylmethacrylamide) in aqueous solution, J. Mol. Struct. 974 (2010) 80-87; (d) M. Thomas, H. Richardson, Two-dimensional FT-IR correlation analysis of the phase transitions in a liquid crystal 40-n-octyl-cyanobiphenyl (8CB), Vib. Spectrosc. 24 (2000) 137-146; (e) S. Morita, H. Shinzawa, I. Noda, Y. Ozaki, Perturbation-correlation movingwindow two-dimensional correlation spectroscopy, Appl. Spectrosc. 60 (2006) 398-406; (f) S.R. Ryu, I. Noda, C.H. Lee, et al., Two-dimensional correlation analysis and waterfall plots for detecting positional fluctuations of spectral changes, Appl. Spectrosc. 65 (2011) 359-368; (g) I. Noda, Close-up view on the inner workings of two-dimensional correlation spectroscopy, Vib. Spectrosc. 60 (2012) 146-153; (h) I. Noda, Two-dimensional codistribution spectroscopy to determine the sequential order of distributed presence of species, J. Mol. Struct. 1069 (2014) 60-72; (i) S. Š ašić, A. Muszynski, Y. Ozaki, A new possibility of the generalized twodimensional correlation spectroscopy. 1. Sample-sample correlation spectroscopy, J. Phys. Chem. A 104 (2000) 6380-6387; (j) Y.M. Jung, S.B. Kim, I. Noda, New approach to generalized two-dimensional correlation spectroscopy. II: Eigenvalue manipulation transformation (EMT) for noise suppression, Appl. Spectrosc. 57 (2003) 557-563; (k) I. Noda, Two-dimensional correlation analysis of unevenly spaced spectral data, Appl. Spectrosc. 57 (2003) 1049-1051; (l) I. Noda, Scaling techniques to enhance two-dimensional correlation spectra, J. Mol. Struct. 883-884 (2008) 216-227; (m) Y. Wu, I. Noda, Extension of quadrature orthogonal signal corrected twodimensional (QOSC 2D) correlation spectroscopy I: principal component analysis based QOSC 2D, Appl. Spectrosc. 61 (2007) 1040-1044; (m) I. Noda, Recent mathematical developments in 2D correlation spectroscopy, in: Y. Ozaki, I. Noda (Eds.), Two-Dimensional Correlation Spectroscopy, AIP Press, Melville, 2000, pp. 201-204; (o) S. Morita, Y. Ozaki, I. Noda, Global phase angle description of generalized twodimensional correlation spectroscopy: 1. theory and its simulation for practical use, Appl. Spectrosc. 55 (2001) 1618-1621; (p) I. Noda, Kernel analysis for two-dimensional (2D) correlation spectroscopy, J. Mol. Struct. 799 (2006) 34-40.

  • 加载中
    1. [1]

      Pei HuangWeijie ZhangJunping WangFangjun HuoCaixia Yin . Rapid and specific fluorescent probe visualizes dynamic correlation of Cys and HClO in OGD/R. Chinese Chemical Letters, 2025, 36(1): 109778-. doi: 10.1016/j.cclet.2024.109778

    2. [2]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    3. [3]

      Xi Zhou Shengyao Wang . Dynamic two-dimensional covalent organic frameworks via ‘wine rack' design. Chinese Journal of Structural Chemistry, 2025, 44(4): 100464-100464. doi: 10.1016/j.cjsc.2024.100464

    4. [4]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    5. [5]

      Shimei WuYining LiLantao ChenYufei ZhangLingxing ZengHaosen Fan . Hexapod cobalt phosphosulfide nanorods encapsulating into multiple hetero-atom doped carbon frameworks for advanced sodium/potassium ion battery anodes. Chinese Chemical Letters, 2025, 36(4): 109796-. doi: 10.1016/j.cclet.2024.109796

    6. [6]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    7. [7]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    8. [8]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    9. [9]

      Jiahao LiGuinan ChenChunhong ChenYuanyuan LouZhihao XingTao ZhangChengtao GongYongwu Peng . Modulated synthesis of stoichiometric and sub-stoichiometric two-dimensional covalent organic frameworks for enhanced ethylene purification. Chinese Chemical Letters, 2025, 36(1): 109760-. doi: 10.1016/j.cclet.2024.109760

    10. [10]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    11. [11]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    12. [12]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    13. [13]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    14. [14]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    15. [15]

      Yan FanJiao TanCuijuan ZouXuliang HuXing FengXin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101

    16. [16]

      Yiwen XuChaozheng HeChenxu ZhaoLing Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797

    17. [17]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    18. [18]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    19. [19]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    20. [20]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

Metrics
  • PDF Downloads(0)
  • Abstract views(768)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return