Citation: Chuang Tian, Hai-Peng Ji, Chuan-Yong Zong, Cong-Hua Lu. Controlled fabrication of hierarchically microstructured surfaces via surface wrinkling combined with template replication[J]. Chinese Chemical Letters, ;2015, 26(1): 15-20. doi: 10.1016/j.cclet.2014.10.003 shu

Controlled fabrication of hierarchically microstructured surfaces via surface wrinkling combined with template replication

  • Corresponding author: Cong-Hua Lu, 
  • Received Date: 22 August 2014
    Available Online: 25 September 2014

    Fund Project:

  • In this paper, we present a simple method by combining surface wrinkling and template replication to create a series of hierarchical structures on polydimethylsiloxane (PDMS) elastomer. The primary stable lined patterns are formed by duplicating commercialized compact disk and digital versatile disk with PDMS. The secondary microscale patterns are from surface wrinkling, which is elicited by oxygen plasma (OP) treatment of the prestrained PDMS stamp followed with the prestrain release. By systematically varying the OP exposure duration, the prestrain, and the angle (θ) between the primary pattern orientation and the prestrain direction, we obtain highly ordered well-organized composite patterns from different patterning techniques and with different length scales and mechanical stabilities.
  • 加载中
    1. [1]

      [1] L. Feng, S.H. Li, Y.S. Li, et al., Super-hydrophobic surfaces: from natural to artificial, Adv. Mater. 4 (2002) 1857-1860.

    2. [2]

      [2] R. Blossey, Self-cleaning surfaces—virtual realities, Nat. Mater. 2 (2003) 301-306.

    3. [3]

      [3] S.Z. Wu, D. Wu, J. Yao, et al., One-step preparation of regular micropearl arrays for two-direction controllable anisotropic wetting, Langmuir 26 (2010) 12012- 12016.

    4. [4]

      [4] G.S. Watson, J.A. Watson, Natural nano-structures on insects—possible functions of ordered arrays characterized by atomic force microscopy, Appl. Surf. Sci. 235 (2004) 139-144.

    5. [5]

      [5] K.H. Smith, E. Tejeda-Montes, M. Poch, Integrating top-down and self-assembly in the fabrication of peptide and protein-based biomedical materials, Chem. Soc. Rev. 40 (2011) 4563-4577.

    6. [6]

      [6] C.M. Gabardo, Y. Zhu, L. Soleymani, J.M. Moran-Mirabal, Bench-top fabrication of hierarchically structured high-surface-area electrodes, Adv. Funct. Mater. 23 (2013) 3030-3039.

    7. [7]

      [7] Y. Xia, J.J. McClelland, R. Gupta, et al., Replica molding using polymeric materials: a practical step toward nanomanufacturing, Adv. Mater. 9 (1997) 147-149.

    8. [8]

      [8] B.D. Gates, G.M. Whitesides, Replication of vertical features smaller than 2 nm by soft lithography, J. Am. Chem. Soc. 125 (2003) 14986-14987.

    9. [9]

      [9] X. Yan, S. Li, T.R. Cook, et al., Hierarchical self-assembly: well-defined supramolecular nanostructures and metallohydrogels via amphiphilic discrete organoplatinum (Ⅱ) metallacycles, J. Am. Chem. Soc. 135 (2013) 14036-14039.

    10. [10]

      [10] M.D. Ward, P.R. Raithby, Functional behaviour from controlled self-assembly: challenges and prospects, Chem. Soc. Rev. 42 (2013) 1619-1636.

    11. [11]

      [11] Y. Xia, G.M. Whitesides, Soft lithography, Annu. Rev. Mater. Sci. 28 (1998) 153- 184.

    12. [12]

      [12] A. Mata, A.J. Fleischman, S. Roy, Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems, Biomed. Microdev. 7 (2005) 281- 293.

    13. [13]

      [13] N. Bowden, S. Brittain, A. Evans, J.W. Hutchinson, G.M. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer, Nature 393 (1998) 146-149.

    14. [14]

      [14] J. Genzer, J. Groenewold, Soft matter with hard skin: from skin wrinkles to templating and material characterization, Soft Matter 2 (2006) 310-323.

    15. [15]

      [15] Z.Y. Huang, W. Hong, Z. Suo, Nonlinear analyses of wrinkles in a film bonded to a compliant substrate, J. Mech. Phys. Solids 53 (2005) 2101-2118.

    16. [16]

      [16] P.C. Lin, S. Vajpayee, A. Jagota, et al., Mechanically tunable dry adhesive from wrinkled elastomers, Soft Matter 4 (2008) 1830-1835.

    17. [17]

      [17] K. Efimenko, M. Rackaitis, E. Manias, et al., Nested self-similar wrinkling patterns in skins, Nat. Mater. 4 (2005) 293-297.

    18. [18]

      [18] C.M. Stafford, C. Harrison, K.L. Beers, et al., A buckling-based metrology for measuring the elastic moduli of polymeric thin films, Nat. Mater. 3 (2004) 545-550.

    19. [19]

      [19] A.J. Nolte, M.F. Rubner, R.E. Cohen, Determining the Young's modulus of polyelectrolyte multilayer films via stress-induced mechanical buckling instabilities, Macromolecules 38 (2005) 5367-5370.

    20. [20]

      [20] S. Yang, K. Khare, P.C. Lin, Harnessing surface wrinkle patterns in soft matter, Adv. Funct. Mater. 20 (2010) 2550-2564.

    21. [21]

      [21] J.Y. Chung, A.J. Nolte, C.M. Stafford, Surface wrinkling: a versatile platform for measuring thin-film properties, Adv. Mater. 23 (2011) 349-368.

    22. [22]

      [22] D.Y. Khang, H.Q. Jiang, Y. Huang, J.A. Rogers, A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates, Science 311 (2006) 208-212.

    23. [23]

      [23] M.W. Moon, A. Vaziri, Surface modification of polymers using a multi-step plasma treatment, Scr. Mater. 60 (2009) 44-47.

    24. [24]

      [24] C.S. Davis, A.J. Crosby, Wrinkle morphologies with two distinct wavelengths, J. Polym. Sci. Pol. Phys. 50 (2012) 1225-1232.

    25. [25]

      [25] J. Yin, C.H. Lu, Hierarchical surface wrinkles directed by wrinkled templates, Soft Matter 8 (2012) 6528-6534.

    26. [26]

      [26] J.H. Lee, H.W. Ro, R. Huang, et al., Anisotropic, hierarchical surface patterns via surface wrinkling of nanopatterned polymer films, Nano Lett. 12 (2012) 5995- 5999.

    27. [27]

      [27] A. Chiche, C.M. Stafford, J.T. Cabral, Complex micropatterning of periodic structures on elastomeric surfaces, Soft Matter 4 (2008) 2360-2364.

    28. [28]

      [28] Y. Li, S. Dai, J. John, K.R. Carter, Superhydrophobic surfaces from hierarchically structured wrinkled polymers, ACS Appl. Mater. Inter. 5 (2013) 11066-11073.

    29. [29]

      [29] H. Hillborg, J.F. Anknerc, U.W. Gedde, et al., Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques, Polymer 41 (2000) 6851-6863.

    30. [30]

      [30] H. Hillborg, N. Tomczak, A. Olah, et al., Nanoscale hydrophobic recovery: a chemical force microscopy study of UV/ozone-treated cross-linked poly (dimethylsiloxane), Langmuir 20 (2004) 785-794.

    31. [31]

      [31] J.Y. Park, H.Y. Chae, C.H. Chung, et al., Controlled wavelength reduction in surface wrinkling of poly (dimethylsiloxane), Soft Matter 6 (2010) 677-684.

    32. [32]

      [32] N. Bowden, W.T. Huck, K.E. Paul, G.M. Whitesides, The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer, Appl. Phys. Lett. 75 (1999) 2557-2559.

    33. [33]

      [33] D.B.H. Chua, H.T. Ng, S.F.Y. Li, Spontaneous formation of complex and ordered structures on oxygen-plasma-treated elastomeric polydimethylsiloxane, Appl. Phys. Lett. 76 (2000) 721-723.

    34. [34]

      [34] H. Jiang, D.Y. Khang, J. Song, et al., Finite deformation mechanics in buckled thin films on compliant supports, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 15607- 15612.

    35. [35]

      [35] D.H. Chu, A. Nemotoa, H. Itoa, Enhancement of dynamic wetting properties by direct fabrication on robust micro-micro hierarchical polymer surfaces, Appl. Surf. Sci. 300 (2014) 117-123.

    36. [36]

      [36] J. Feng, M.T. Tuominen, J.P. Rothstein, Hierarchical superhydrophobic surfaces fabricated by dual-scale electron-beam-lithography with well-ordered secondary nanostructures, Adv. Funct. Mater. 21 (2011) 3715-3722.

    37. [37]

      [37] C.H. Lu, H. Mohwald, A. Fery, A lithography-free method for directed colloidal crystal assembly based on wrinkling, Soft Matter 3 (2007) 1530-1536.

    38. [38]

      [38] D.C. Hyun, G.D. Moon, C.J. Park, et al., Buckling-assisted patterning of multiple polymers, Adv. Mater. 22 (2010) 2642-2646.

    39. [39]

      [39] S.G. Lee, H. Kim, H.H. Choi, et al., Evaporation-induced self-alignment and transfer of semiconductor nanowires by wrinkled elastomeric templates, Adv. Mater. 25 (2013) 2162-2166.

  • 加载中
    1. [1]

      Chuyu HuangZhishan LiuLinping ZhaoZuxiao ChenRongrong ZhengXiaona RaoYuxuan WeiXin ChenShiying Li . Metal-coordinated oxidative stress amplifier to suppress tumor growth combined with M2 macrophage elimination. Chinese Chemical Letters, 2024, 35(12): 109696-. doi: 10.1016/j.cclet.2024.109696

    2. [2]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    3. [3]

      Xiangdong LaiTengfei LiuZengchao GuoYihan WangJiang XiaoQingxiu XiaXiaohui LiuHui JiangXuemei WangIn situ formed fluorescent gold nanoclusters inhibit hair follicle regeneration in oxidative stress microenvironment via suppressing NFκB signal pathway. Chinese Chemical Letters, 2025, 36(2): 109762-. doi: 10.1016/j.cclet.2024.109762

    4. [4]

      Peng ZhouZiang JiangYang LiPeng XiaoFeixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467

    5. [5]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    6. [6]

      Ting ShiZiyang SongYaokang LvDazhang ZhuLing MiaoLihua GanMingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559

    7. [7]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    8. [8]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    9. [9]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    10. [10]

      Yukai TongZhijun WuBo ZhouMin HuAnpei Ye . Surface tension of single suspended aerosol microdroplets. Chinese Chemical Letters, 2024, 35(4): 109062-. doi: 10.1016/j.cclet.2023.109062

    11. [11]

      Yu HeHao JiangShaoxuan YuanJiayi LuQiang Sun . On-surface photo-induced dechlorination. Chinese Chemical Letters, 2024, 35(9): 109807-. doi: 10.1016/j.cclet.2024.109807

    12. [12]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

    13. [13]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenQiang SunShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoLi Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100

    14. [14]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    15. [15]

      Jiale ZhengMei ChenHuadong YuanJianmin LuoYao WangJianwei NaiXinyong TaoYujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812

    16. [16]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    17. [17]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    18. [18]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

    19. [19]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    20. [20]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

Metrics
  • PDF Downloads(0)
  • Abstract views(725)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return