Citation: Ming-Hui He, Mei-Lin Su, Zhao-Hui Yu, Guang-Xue Chen, Zhao-Hua Zeng, Jian-Wen Yang. Benzoylformamides as new photocaged bases for photo-latent anion polymerization[J]. Chinese Chemical Letters, ;2015, 26(1): 21-25. doi: 10.1016/j.cclet.2014.10.002 shu

Benzoylformamides as new photocaged bases for photo-latent anion polymerization

  • Corresponding author: Jian-Wen Yang, 
  • Received Date: 10 August 2014
    Available Online: 25 September 2014

    Fund Project: This research was financially supported by National Natural Science Foundation of China (No. 21374135) (No. 21374135)

  • Benzoylformamide (BFA) derivatives are proposed as new photocaged bases with good solubility in epoxy resin. Initially their structures were confirmed by 1HNMR, 13C NMR, and elemental analysis. Next, we detail their thermal stability, solubility behavior, and photolysis products. Furthermore, the model photo-latent anion polymerization (AP) of epoxide system in the presence of BFA-dBA (N,N-dibenzyl-2-oxo-2-phenylacetamide) as a photocaged base has been investigated, and excellent photopolymerization profile is obtained.
  • 加载中
    1. [1]

      [1] M.A. Tehfe, F. Dumur, P. Xiao, et al., Chalcone derivatives as highly versatile photoinitiators for radical, cationic, thiol-ene and IPN polymerization reactions upon exposure to visible light, Polym. Chem. 5 (2014) 382-390.

    2. [2]

      [2] Y. Yagci, S. Jockusch, N.J. Turro, Photoinitiated polymerization: advances, challenges, and opportunities, Macromolecules 43 (2010) 6245-6260.

    3. [3]

      [3] L. Gonsalvi, M. Peruzzini, Novel synthetic pathways for bis(acyl)phosphine oxide photoinitiators, Angew. Chem. 51 (2012) 7895-7897.

    4. [4]

      [4] H. Tar, D. Sevinc Esen, M. Aydin, et al., Panchromatic type II photoinitiator for free radical polymerization based on thioxanthone derivative, Macromolecules 46 (2013) 3266-3272.

    5. [5]

      [5] J.V. Crivello, E. Reichmanis, Photopolymer materials and processes for advanced technologies, Chem. Mater. 26 (2013) 533-548.

    6. [6]

      [6] T. Gong, B.J. Adzima, C.N. Bowman, A novel copper containing photoinitiator, copper(Ⅱ) acylphosphinate, and its application in both the photomediated CuAAC reaction and in atom transfer radical polymerization, Chem. Commun. 49 (2013) 7950-7952.

    7. [7]

      [7] Y. Xu, H.J. Xu, X.S. Jiang, J. Yin, Versatile functionalization of the micropatterned hydrogel of hyperbranched poly(ether amine) based on "Thiol-yne" chemistry, Adv. Funct. Mater. 24 (2014) 1679-1686.

    8. [8]

      [8] P. Xiao, F. Dumur, M.A. Tehfe, et al., Difunctional acridinediones as photoinitiators of polymerization under UV and visible lights: structural effects, Polymer 54 (2013) 3458-3466.

    9. [9]

      [9] M.A. Tehfe, F. Dumur, B. Graff, et al., Blue-to-red light sensitive push-pull structured photoinitiators: indanedione derivatives for radical and cationic photopolymerization reactions, Macromolecules 46 (2013) 3332-3341.

    10. [10]

      [10] P. Xiao, F. Dumur, D. Thirion, et al., Multicolor photoinitiators for radical and cationic polymerization: monofunctional vs polyfunctional thiophene derivatives, Macromolecules 46 (2013) 6786-6793.

    11. [11]

      [11] V. Kumbaraci, B. Aydogan, N. Talinli, Y. Yagci, Naphthodioxinone-1,3-benzodioxole as photochemically masked one-component type II photoinitiator for free radical polymerization, J. Polym. Sci. A: Polym. Chem. 50 (2012) 2612-2618.

    12. [12]

      [12] B. Kiskan, J.S. Zhang, X.C. Wang, M. Antonietti, Y. Yagci, Mesoporous graphitic carbon nitride as a heterogeneous visible light photoinitiator for radical polymerization, ACS Macro. Lett. 1 (2012) 546-549.

    13. [13]

      [13] H. Salmi, H. Tar, A. Ibrahim, C. Ley, X. Allonas, Ketocoumarin/triazine/thiol as new high speed photoinitiating system for free radical polymerization under visible light in aerated media, Eur. Polym. J. 49 (2013) 2275-2279.

    14. [14]

      [14] J.V. Crivello, M.F. Aldersley, Supramolecular diaryliodonium salt-crown ether complexes as cationic photoinitiators, J. Polym. Sci. A: Polym. Chem. 51 (2013) 801-814.

    15. [15]

      [15] A.A. Alzahrani, A.H. Erbse, C.N. Bowman, Evaluation and development of novel photoinitiator complexes for photoinitiating the copper-catalyzed azide-alkyne cycloaddition reaction, Polym. Chem. 5 (2014) 1874-1882.

    16. [16]

      [16] J.L. Yang, S.Q. Shi, F. Xu, J. Nie, Synthesis and photopolymerization kinetics of benzophenone sesamol one-component photoinitiator, Photochem. Photobiol. Sci. 12 (2013) 323-329.

    17. [17]

      [17] J. Bai, Z. Shi, J. Yin, A novel main chain benzoxazine polymer with the ability of UVinduced self-surface modification, Polymer 54 (2013) 2498-2505.

    18. [18]

      [18] X. Sun, J.P. Gao, Z.Y. Wang, Bicyclic guanidinium tetraphenylborate: a photobase generator and a photocatalyst for living anionic ring-opening polymerization and cross-linking of polymeric materials containing ester and hydroxy groups, J. Am. Chem. Soc. 130 (2008) 8130-8131.

    19. [19]

      [19] R. Popielarz, A.M. Sarker, D.C. Neckers, Applicability of tetraphenylborate salts as free radical initiators, Macromolecules 31 (1998) 951-954.

    20. [20]

      [20] S. Hu, A.M. Sarker, Y. Kaneko, D.C. Neckers, Reactivities of chromophore-containing methyl tri-n-butylammonium organoborate salts as free radical photoinitiators: dependence on the chromophore and borate counterion, Macromolecules 31 (1998) 6476-6480.

    21. [21]

      [21] S. Hassoon, A. Sarker, M.A.J. Rodgers, D.C. Neckers, photochemistry of (benzophenonylmethyl)- tri-n-butylammonium triphenylbutylborate: inter- and intra-ion-pair electron transfer photoreduction, J. Am. Chem. Soc. 117 (1995) 11369-11370.

    22. [22]

      [22] W.X. Xi, M. Krieger, C.J. Kloxin, C.N. Bowman, A new photoclick reaction strategy: photo-induced catalysis of the thiol-michael addition via a caged primary amine, Chem. Commun. 49 (2013) 4504-4506.

    23. [23]

      [23] Y. Jian, Y. He, Y. Sun, et al., Thiol-epoxy/thiol-acrylate hybrid materials synthesized by photopolymerization, J. Mater. Chem. C 1 (2013) 4481-4489.

    24. [24]

      [24] X. Yu, J. Chen, J. Yang, Z. Zeng, Y. Chen, Preparation of a series of photoinitiators and their use in the thermal curing of epoxide and radical polymerization of acrylate, Polymer 46 (2005) 5736-5745.

    25. [25]

      [25] K. Suyama, M. Shirai, Photobase generators: recent progress and application trend in polymer systems, Prog. Polym. Sci. 34 (2009) 194-209.

    26. [26]

      [26] M. He, X. Huang, Z. Zeng, J. Yang, Phototriggered base proliferation: a highly efficient domino reaction for creating functionally photo-screened materials, Macromolecules 46 (2013) 6402-6407.

    27. [27]

      [27] M.H. He, X. Huang, Z.H. Zeng, J.W. Yang, Photo-triggered redox frontal polymerization: a new tool for synthesizing thermally sensitive materials, J. Polym. Sci. A: Polym. Chem. 51 (2013) 4515-4521.

    28. [28]

      [28] M. He, X. Huang, Y. Huang, Z. Zeng, J. Yang, Photoinduced redox initiation for fast polymerization of acrylaytes based on latent superbase and peroxides, Polymer 53 (2012) 3172-3177.

    29. [29]

      [29] M. He, G. Chen, X. Huang, et al., N-phthaloyltranexamic acid ammonium salt derivatives as photocaged superbase for redox free radical photopolymerization, Polym. Chem. 5 (2014) 2951-2960.

    30. [30]

      [30] M. He, S. Jiang, R. Xu, et al., Domino free radical photopolymerization based on phototriggered base proliferation reaction and redox initiation, J. Polym. Sci. A: Polym. Chem. 52 (2014) 1560-1569.

    31. [31]

      [31] M.H. He, R.X. Xu, G.X. Chen, Z.H. Zeng, J.W. Yang, A thioxanthone-based photocaged superbase for highly effective free radical photopolymerization, Chin. Chem. Lett. 25 (2014) 1445-1448.

    32. [32]

      [32] T. Lavy, Y. Sheynin, M. Kaftory, The effects of space formed by host molecules in inclusion compounds on the homogeneity/heterogeneity of the photoreaction in the solid state, Eur. J. Org. Chem. 23 (2004) 4802-4808.

    33. [33]

      [33] J.L. Jesuraj, J. Sivaguru, Photochemical type II reaction of atropchiral benzoylformamides to point chiral oxazolidin-4-ones. Axial chiral memory leading to enantiomeric resolution of photoproducts, Chem. Commun. 46 (2010) 4791-4793.

    34. [34]

      [34] A. Natarajan, J.T.Mague, V. Ramamurthy, asymmetric induction during yang cyclization of α-oxoamides: the power of a covalently linked chiral auxiliary is enhanced in the crystalline state, J. Am. Chem. Soc. 127 (2005) 3568-3576.

    35. [35]

      [35] A.J. Ayitou, J.L. Jesuraj, N. Barooah, A. Ugrinov, J. Sivaguru, Enantiospecific photochemical Norrish/Yang type II reaction of nonbiaryl atropchiral α-oxoamides in solution—axial to point chirality transfer, J. Am. Chem. Soc. 131 (2009) 11314- 11315.

    36. [36]

      [36] U. Zehavi, Photochemical reactions of phenylglyoxalyl amides, J. Org. Chem. 42 (1977) 2821-2825.

    37. [37]

      [37] B. Åkermark, N.G. Johansson, B. Sjöberg, Synthesis of strained heterocyclic rings, Tetrahedron Lett. 10 (1969) 371-372.

    38. [38]

      [38] K.R. Henery-Logan, C.G. Chen, Synthesis of oxygen analogs of the penicillins. I. Photocyclization of 2-oxoamides to 3-carbomethoxy-6-hydroxypenams, Tetrahedron Lett. 14 (1973) 1103-1104.

    39. [39]

      [39] H. Aoyama, T. Hasegawa, M. Watabe, H. Shiraishi, Y. Omote, Photochemical reactions of N,N-disubstituted alphα-oxoamides, J. Org. Chem. 43 (1978) 419-422.

    40. [40]

      [40] H. Aoyama, M. Sakamoto, K. Kuwabara, K. Yoshida, Y. Omote, Photochemical reactions of alpha-oxo amides. Norrish type ii reactions via zwitterionic intermediates, J. Am. Chem. Soc. 105 (1983) 1958-1964.

    41. [41]

      [41] Y. Gnanou, M. Fontanille, Organic and Physical Chemistry of Polymers, John Wiley & Sons, Hoboken, NJ, 2008.

    42. [42]

      [42] S. Chiba, L. Zhang, J.Y. Lee, Copper-catalyzed synthesis of azaspirocyclohexadienones from a-azido-N-arylamides under an oxygen atmosphere, J. Am. Chem. Soc. 132 (2010) 7266-7267.

    43. [43]

      [43] N.G. Johansson, B.Åkermark, B. Sjöberg, Strained heterocyclic compounds 9. Synthesis of 2-hydroxy-beta-lactams and oxazolidin-4-ones by photocyclization of 2-oxoamides, Acta Chem. Scand. B 30 (1976) 383-390.

  • 加载中
    1. [1]

      Wenbi WuYinchu DongHaofan LiuXuebing JiangLi LiYi ZhangMaling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260

    2. [2]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    3. [3]

      Qian WuMengda XuTianjiao MaShuzhen YanJin LiXuesong Jiang . Chalcone-derived oxime esters with efficient photoinitiation properties under LED irradiation. Chinese Chemical Letters, 2025, 36(3): 110427-. doi: 10.1016/j.cclet.2024.110427

    4. [4]

      Yunjia Jiang Lingyao Wang Yuanbin Zhang . Anion pillared MOFs for challenging hydrocarbon separations. Chinese Journal of Structural Chemistry, 2024, 43(11): 100374-100374. doi: 10.1016/j.cjsc.2024.100374

    5. [5]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    6. [6]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    7. [7]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    8. [8]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    9. [9]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    10. [10]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    11. [11]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

    12. [12]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    13. [13]

      Huirong Chen Yingzhi He Yan Han Jianbo Hu Jiantang Li Yunjia Jiang Basem Keshta Lingyao Wang Yuanbin Zhang . A new SIFSIX anion pillared cage MOF with crs topological structure for efficient C2H2/CO2 separation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100508-100508. doi: 10.1016/j.cjsc.2024.100508

    14. [14]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    15. [15]

      Yu ZhouLin-Tao JiangXiao-Ming JiangBin-Wen LiuGuo-Cong Guo . Mixed-anion square-pyramid [SbS3I2] units causing strong second-harmonic generation intensity and large birefringence. Chinese Chemical Letters, 2025, 36(4): 109740-. doi: 10.1016/j.cclet.2024.109740

Metrics
  • PDF Downloads(0)
  • Abstract views(707)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return