Citation: Wei Wei, Ling-Xiao Song, Lin Guo. SnO2 hollow nanospheres assembled by single layer nanocrystals as anode material for high performance Li ion batteries[J]. Chinese Chemical Letters, ;2015, 26(1): 124-128. doi: 10.1016/j.cclet.2014.09.023 shu

SnO2 hollow nanospheres assembled by single layer nanocrystals as anode material for high performance Li ion batteries

  • Corresponding author: Lin Guo, 
  • Received Date: 6 August 2014
    Available Online: 18 September 2014

    Fund Project: This work was financially supported by the National Basic Research Program of China (Nos. 2010CB934700, 2013CB934004, 2011CB935704) (Nos. 2010CB934700, 2013CB934004, 2011CB935704)National Natural Science Foundation of China (No. 11079002). (No. 11079002)

  • SnO2 hollow nanospheres were successfully synthesized via a facile one-step solvothermal method. Characterizations show that the as-prepared SnO2 spheres are of hollow structure with a diameter at around 50 nm, and especially, the shell of the spheres is assembled by single layer SnO2 nanocrystals. The surface area of the material reaches up to 202.5 m2/g. As an anode material for Li ion batteries, the sample exhibited improved electrochemical performance compared with commercial SnO2 particles. After cycled at high current rate of 0.5 C, 1 C and 0.5 C for 20 cycles, respectively, the electrode can maintain a capacity of 509 mAh/g. The suitable shell thickness/diameter ratio endows the good structural stability of the material during cycling, which promises the excellent cycling performance of the electrode. The large surface area and the ultra thin shell ensure the high rate performance of the material.
  • 加载中
    1. [1]

      [1] J.S. Chen, L. Archer, X.W. Lou, SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries, J. Mater. Chem. 21 (2011) 9912-9924.

    2. [2]

      [2] X.W. Lou, J.S. Chen, P. Chen, L.A. Archer, One-pot synthesis of carbon-coated SnO2 nanocolloids with improved reversible lithium storage properties, Chem. Mater. 21 (2009) 2868-2874.

    3. [3]

      [3] P. Meduri, E. Clark, E. Dayalan, G.U. Sumanasekera, M.K. Sunkara, Kinetically limited de-lithiation behavior of nanoscale tin-covered tin oxide nanowires, Energy Environ. Sci. 4 (2011) 1695-1699.

    4. [4]

      [4] Y.M. Li, J.H. Li, Carbon-coated macroporous Sn2P2O7 as anode materials for Li-ion battery, J. Phys. Chem. C 112 (2008) 14216-14219.

    5. [5]

      [5] N.H. Zhao, L.C. Yang, P. Zhang, et al., Polycrystalline SnO2 nanowires coated with amorphous carbon nanotube as anode material for lithium ion batteries, Mater. Lett. 64 (2010) 972-975.

    6. [6]

      [6] Z.H. Wen, Q. Wang, Q. Zhang, J. Li, In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: a novel composite with porous-tube structure as anode for lithium batteries, Adv. Funct. Mater. 17 (2007) 2772-2778.

    7. [7]

      [7] N.H. Zhao, G.J. Wang, Y. Huang, et al., Preparation of nanowire arrays of amorphous carbon nanotube-coated single crystal SnO2, Chem. Mater. 20 (2008) 2612- 2614.

    8. [8]

      [8] Y.M. Li, X.J. Lü, J. Lu, J.H. Li, Preparation of SnO2-nanocrystal/graphene-nanosheets composites and their lithium storage ability, J. Phys. Chem. C 114 (2010) 21770- 21774.

    9. [9]

      [9] S.J. Ding, D.Y. Luan, F. Boey, et al., SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties, Chem. Commun. 47 (2011) 7155-7157.

    10. [10]

      [10] Q. Wang, Z.H. Wen, J.H. Li, Fast and reversible lithium-induced electrochemical alloying in tin-based composite oxide hierarchical microspheres assembled by nanoplate building blocks, J. Power Sources 182 (2008) 334-339.

    11. [11]

      [11] H. Wang, Q.Q. Liang, W.J. Wang, et al., Preparation of flower-like SnO2 nanostructures and their applications in gas-sensing and lithium storage, Cryst. Growth Des. 11 (2011) 2942-2947.

    12. [12]

      [12] F. Wang, S. Xiao, Z. Chang, Y.Q. Yang, Y.P. Wu, Nanoporous LiNi1/3Co1/3Mn1/3O2 as an ultra-fast charge cathode material for aqueous rechargeable lithium batteries, Chem. Commun. 49 (2013) 9209-9211.

    13. [13]

      [13] W. Tang, Y.Y. Hou, F.X. Wang, et al., LiMn2O4 nanotube as cathode material of second-level charge capability for aqueous rechargeable batteries, Nano Lett. 13 (2013) 2036-2040.

    14. [14]

      [14] X.M. Yin, C.C. Li, M. Zhang, et al., One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium ion batteries, J. Phys. Chem. C 114 (2010) 8084-8088.

    15. [15]

      [15] H.X. Yang, J.F. Qian, Z.X. Chen, X.P. Ai, Y.L. Cao, Multilayered nanocrystalline SnO2 hollow microspheres synthesized by chemically induced self-assembly in the hydrothermal environment, J. Phys. Chem. C 111 (2007) 14067-14071.

    16. [16]

      [16] D. Deng, J. Lee, Hollow core-shell mesospheres of crystalline SnO2 nanoparticle aggregates for high capacity Li+ ion storage, Chem. Mater. 20 (2008) 1841-1846.

    17. [17]

      [17] X.W. Lou,D.Deng, J.Y. Lee, L.A.Archer, PreparationofSnO2/carboncomposite hollow spheres and their lithium storage properties, Chem. Mater. 20 (2008) 6562-6566.

    18. [18]

      [18] S.J. Ding, J.S. Chen, G.G. Qi, et al., Formation of SnO2 hollow nanospheres inside mesoporous silica nanoreactors, J. Am. Chem. Soc. 133 (2011) 21-23.

    19. [19]

      [19] W. Wei, S. Gao, Z. Yang, et al., Porous SnO2 nanocubes with controllable pore volume and their Li storage performance, RSC Adv. 4 (2014) 13250-13255.

    20. [20]

      [20] Z.W. Deng, M. Chen, G.X. Gu, L. Wu, A facile method to fabricate ZnO hollow spheres and their photocatalytic property, J. Phys. Chem. B 112 (2008) 16-22.

    21. [21]

      [21] H.J. Zhang, J. Wu, L.P. Zhou, D.Y. Zhang, L.M. Qi, Facile synthesis of monodisperse microspheres and gigantic hollow shells of mesoporous silica in mixed water- ethanol solvents, Langmuir 23 (2007) 1107-1113.

    22. [22]

      [22] C. Li, W. Wei, S.M. Fang, et al., A novel CuO-nanotube/SnO2 composite as the anode material for lithium ion batteries, J. Power Sources 195 (2010) 2939-2944.

    23. [23]

      [23] J.F. Liang, W. Wei, D. Zhong, et al., One-step in situ synthesis of SnO2/graphene nanocomposites and its application as an anode material for Li-ion batteries, ACS Appl. Mater. Interfaces 4 (2012) 454-459.

  • 加载中
    1. [1]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    2. [2]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    3. [3]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    4. [4]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    5. [5]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    6. [6]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    7. [7]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    8. [8]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    9. [9]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    10. [10]

      Yongjian LiXinyu ZhuChenxi WeiYouyou FangXinyu WangYizhi ZhaiWenlong KangLai ChenDuanyun CaoMeng WangYun LuQing HuangYuefeng SuHong YuanNing LiFeng Wu . Unraveling the chemical and structural evolution of novel Li-rich layered/rocksalt intergrown cathode for Li-ion batteries. Chinese Chemical Letters, 2024, 35(12): 109536-. doi: 10.1016/j.cclet.2024.109536

    11. [11]

      Ziling JiangShaoqing ChenChaochao WeiZiqi ZhangZhongkai WuQiyue LuoLiang MingLong ZhangChuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561

    12. [12]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    13. [13]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

    14. [14]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    15. [15]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    16. [16]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    17. [17]

      Xi TangChunlei ZhuYulu YangShihan QiMengqiu CaiAbdullah N. AlodhaybJianmin Ma . Additive regulating Li+ solvation structure to construct dual LiF−rich electrode electrolyte interphases for sustaining 4.6 V Li||LiCoO2 batteries. Chinese Chemical Letters, 2024, 35(12): 110014-. doi: 10.1016/j.cclet.2024.110014

    18. [18]

      Yue Zheng Tianpeng Huang Pengxian Han Jun Ma Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390

    19. [19]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    20. [20]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

Metrics
  • PDF Downloads(0)
  • Abstract views(654)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return