Citation: Meng-Juan Li, Yan-Hong Huang, An-Qi Ju, Tian-Shi Yu, Ming-Qiao Ge. Synthesis and characterization of azo dyestuff based on bis(2-hydroxyethyl) terephthalate derived from depolymerized waste poly(ethylene terephthalate) fibers[J]. Chinese Chemical Letters, ;2014, 25(12): 1550-1554. doi: 10.1016/j.cclet.2014.09.022 shu

Synthesis and characterization of azo dyestuff based on bis(2-hydroxyethyl) terephthalate derived from depolymerized waste poly(ethylene terephthalate) fibers

  • Corresponding author: Meng-Juan Li,  Ming-Qiao Ge, 
  • Received Date: 24 May 2014
    Available Online: 18 September 2014

    Fund Project: This work was financially supported by the National High-tech R&D Program of China (863 Program, No. 2012AA030313) (863 Program, No. 2012AA030313) the Open Project Program of Key Laboratory of Eco-Textiles (Jiangnan University) (Jiangnan University) Ministry of Education, China (No. KLET1115) (No. KLET1115) the Fundamental Research Funds for the Central Universities (No. JUSRP11201) (No. JUSRP11201)

  • This work aimed at effectively utilizing the chemically depolymerized waste poly(ethylene terephthalate) (PET) fibers into useful products for the textile industry. PET fibers were glycolytically degraded by excess ethylene glycol as depolymerizing agent and zinc acetate dihydrate as catalyst. The glycolysis product, bis(2-hydroxyethyl) terephthalate (BHET), was purified through repeated crystallization to get an average yield above 80%. Then, BHET was nitrated, reduced, and azotized to get diazonium salt. Finally, the produced diazonium salt was coupled with 1-(4-sulfophenyl)-3-methyl-5-pyrazolone to get azo dyestuff. The structures of BHET and azo dyestuff were identified by FTIR and 1H NMR spectra and elemental analysis. Nylon filaments dyed by the synthesized azo dyestuff with the dye bath pH from 4.14 to 5.88 showed bright yellow color. The performances of the dyestuff were described with dye uptake, color fastness, K/S, L*, a*, b*, and ΔE* values.
  • 加载中
    1. [1]

      [1] D.E. Nikles, M.S. Farahat, New motivation for the depolymerization products derived from poly(ethylene terephthalate) (PET) waste: a review, Macromol. Mater. Eng. 290 (2005) 13-30.

    2. [2]

      [2] A. Oromiehie, A. Mamizadeh, Recycling PET beverage bottles and improving properties, J. Polym. Int. 53 (2004) 728-732.

    3. [3]

      [3] L. Bartolome, M. Imran, B.G. Cho, A.A.M. Waheed, H.K. Do, Recent developments in the chemical recycling of PET, in: D.S. Achilias (Ed.), Material Recycling -Trends and Perspectives, Intech, Croatia, 2012, pp. 65-84.

    4. [4]

      [4] S. Sivaram, in: Proceedings of National Seminar on Recycling and Plastics Waste Management, India, (1997), pp. 283-288.

    5. [5]

      [5] H.J. Koo, G.S. Chang, S.H. Kim, W.G. Hahm, S.Y. Park, Effects of recycling processes on physical, mechanical and degradation properties of PET yarns, Fibers Polym. 14 (2013) 2083-2087.

    6. [6]

      [6] A. Aguado, L. Martínez, L. Becerra, et al., Chemical depolymerisation of PET complex waste: hydrolysis vs. glycolysis, J. Mater. Cycles Waste Manag. 16 (2014) 201-210.

    7. [7]

      [7] D. Carta, G. Cao, C. D'Angeli, Chemical recycling of poly(ethylene terephthalate) (PET) by hydrolysis and glycolysis, J. Environ. Sci. Pollut. Res. 10 (2003) 390-394.

    8. [8]

      [8] L.R. Zhang, J. Gao, J.Z. Zou, F.P. Yi, Hydrolysis of poly (ethylene terephthalate) waste bottles in the presence of dual functional phase transfer catalysts, J. Appl. Polym. Sci. 130 (2013) 2790-2795.

    9. [9]

      [9] M. Imran, D.H. Kim, W.A. Al-Masry, et al., Manganese-, cobalt-, and zinc-based mixed-oxide spinels as novel catalysts for the chemical recycling of poly(ethylene terephthalate) via glycolysis, Polym. Degrad. Stabil. 98 (2013) 904-915.

    10. [10]

      [10] N.D. Pingale, S.R. Shukla, Microwave-assisted aminolytic depolymerization of PET waste, Eur. Polym. J. 45 (2009) 2695-2700.

    11. [11]

      [11] R. Shamsi, M. Abdouss, G.M.M. Sadeghi, F.A. Taromi, Synthesis and characterization of novel polyurethanes based on aminolysis of poly(ethylene terephthalate) wastes, and evaluation of their thermal and mechanical properties, J. Polym. Int. 58 (2009) 22-30.

    12. [12]

      [12] Y. Yang, Y.J. Lu, H.W. Xiang, Y.Y. Xu, Y.W. Li, Study on methanolytic depolymerization of PET with supercritical methanol for chemical recycling, Polym. Degrad. Stabil. 75 (2002) 185-191.

    13. [13]

      [13] P.K. Roy, R. Mathur, D. Kumar, C. Rajagopal, Tertiary recycling of poly(ethylene terephthalate) wastes for production of polyurethane-polyisocyanurate foams, J. Environ. Chem. Eng. 1 (2013) 1062-1069.

    14. [14]

      [14] M.J. Li, J. Luo, Y.H. Huang, et al. Recycling of waste poly(ethylene terephthalate) into flame-retardant rigid polyurethane foams, J. Polym. Appl. Sci. 131 (2014), http://dx.doi.org/10.1002/AP.P.40857.

    15. [15]

      [15] I. Duque-Ingunza, R. Ló pez-Fonseca, B. de Rivas, J.I. Gutié rrez-Ortiz, Synthesis of unsaturated polyester resin from glycolysed postconsumer PET wastes, J. Mater. Cycles Waste Manag. 15 (2013) 256-263.

    16. [16]

      [16] A.M. Atta, W. Brostow, T. Datashvili, et al., Porous polyurethane foams based on recycled poly(ethylene terephthalate) for oil sorption, Polym. Int. 62 (2013) 116-126.

    17. [17]

      [17] S.R. Shukla, A.M. Harad, L.S. Jawale, Chemical recycling of PET waste into hydrophobic textile dyestuffs, Polym. Degrad. Stabil. 94 (2009) 604-609.

    18. [18]

      [18] V.S. Palekar, N.D. Pingale, S.R. Shukla, Synthesis, spectral properties and application of novel disazo disperse dyes derived from polyester waste, Color Technol. 126 (2010) 86-91.

    19. [19]

      [19] J. Choi, H. Lee, A.D. Towns, Dyeing properties of novel azo disperse dyes derived from phthalimide and color fastness on poly (lactic acid) fiber, Fibers Polym. 11 (2010) 199-204.

    20. [20]

      [20] M. Ghaemy, H. Mighani, Synthesis and identification of dinitro-and diaminoterephthalic acid, Chin. Chem. Lett. 20 (2009) 800-804.

    21. [21]

      [21] W. Ma, M. Meng, X. Jiang, B.T. Tang, S.F. Zhang, Synthesis of a water-soluble macromolecular light stabilizer containing hindered amine structures, Chin. Chem. Lett. 24 (2013) 153-155.

    22. [22]

      [22] R. McDonald, Colour Physics for Industry, 2nd ed., Society of Dyers and Colourists, Bradford, 1997.

    23. [23]

      [23] J.D. Wang, S.M. Han, D.D. Ke, Synthesis and white-light emission character of CdS magic-sized nanocrystals, Chin. Chem. Lett. 23 (2012) 1407-1410.

  • 加载中
    1. [1]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    2. [2]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    3. [3]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    4. [4]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    5. [5]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    6. [6]

      Shangda QuYiming YuanXu YeWentao Xu . High sensitivity artificial synapses using printed high-transmittance ITO fibers for neuromorphic computing. Chinese Chemical Letters, 2024, 35(12): 110030-. doi: 10.1016/j.cclet.2024.110030

    7. [7]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    8. [8]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    9. [9]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    10. [10]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    11. [11]

      Jun-Ming CaoKai-Yang ZhangJia-Lin YangZhen-Yi GuXing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304

    12. [12]

      Yun WeiLei ZhouWenbin HuLiming YangGuang YangChaoqiang WangHui ShiFei HanYufa FengXuan DingPenghui ShaoXubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172

    13. [13]

      Haibo YeQianyu LiJuan LiDidi LiZhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861

    14. [14]

      Yanbing ShenYuan YuanYaxin WangXiaonan MaWensheng YangYulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949

    15. [15]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    16. [16]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    17. [17]

      Hao Jiang Yuan-Yuan He Hai-Chao Liang Meng-Jia Shang Han-Han Lu Chun-Hua Liu Yin-Shan Meng Tao Liu Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354

    18. [18]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    19. [19]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    20. [20]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

Metrics
  • PDF Downloads(0)
  • Abstract views(668)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return