Citation: Gen-Ping Yan, Xiao-Xiao He, Ke-Min Wang, Yong-Hong Wang, Jin-Quan Liu, Li-Xin Jian, Yin-Fei Mao. One pot synthesis of Ru(bpy)32+ doped graphene oxide-silica composite film for constructing high performance solid-state electrochemiluminescent sensor[J]. Chinese Chemical Letters, ;2014, 25(12): 1520-1524. doi: 10.1016/j.cclet.2014.09.021 shu

One pot synthesis of Ru(bpy)32+ doped graphene oxide-silica composite film for constructing high performance solid-state electrochemiluminescent sensor

  • Corresponding author: Ke-Min Wang,  Li-Xin Jian, 
  • Received Date: 23 June 2014
    Available Online: 4 September 2014

    Fund Project: the project supported by Hunan Provincial Natural Science Foundation and Hunan Provincial Science and Technology Plan of China (No. 2012TT1003). (No. 20110161110016)

  • The Ru(bpy)32+ doped graphene oxide-silica composite film (Ru/GO-SiCF) was synthesized by one pot hydrolysis and condensation of tetraethylorthosilicate (TEOS) in the water-alcohol solution of graphene oxide and Ru(bpy)32+ at room temperature. The prepared Ru/GO-SiCF modified glassy carbon electrode (GCE) showed excellent electrochemiluminescence (ECL) behavior for the determination of tripropylamine (TPA) with high sensitivity and good stability. We expected this simple and novel material will find further application in construction of other targets sensors.
  • 加载中
    1. [1]

      [1] L.R. Faulkner, A.J. Bard, in: A.J. Bard (Ed.), Electroanalytical Chemistry, vol. 10, Marcel Dekker, New York, 1977, pp. 1-95.

    2. [2]

      [2] M. Richter, Electrochemiluminescence (ECL), Chem. Rev. 104 (2004) 3003-3036.

    3. [3]

      [3] R.J. Forster, P. Bertoncello, T.E. Keyes, Electrogenerated chemiluminescence, Ann. Rev. Anal. Chem. 2 (2009) 359-385.

    4. [4]

      [4] W.J. Miao, Electrogenerated chemiluminescence and its biorelated applications, Chem. Rev. 108 (2008) 2506-2553.

    5. [5]

      [5] K.A. Fähnrich, M. Pravda, G.G. Guilbault, Recent applications of electrogenerated chemiluminescence in chemical analysis, Talanta 54 (2001) 531-539.

    6. [6]

      [6] Y.S. Obeng, A.J. Bard, Electrogenerated chemiluminescence. 53. Electrochemistry and emission from adsorbed monolayers of a tris (bipyridyl) ruthenium (Ⅱ)-based surfactant on gold and tin oxide electrodes, Langmuir 7 (1991) 195-201.

    7. [7]

      [7] M.M. Collinson, B. Novak, S.A. Martin, et al., Electrochemiluminescence of ruthenium (Ⅱ) tris (bipyridine) encapsulated in sol-gel glasses, Anal. Chem. 72 (2000) 2914-2918.

    8. [8]

      [8] H.N. Choi, S.H. Cho, W.Y. Lee, Electrogenerated chemiluminescence from tris(2,2'-bipyridyl)ruthenium(Ⅱ) immobilized in titania-perfluorosulfonated ionomer composite films, Anal. Chem. 75 (2003) 4250-4256.

    9. [9]

      [9] S. Zanarini, E. Rampazzo, L.D. Ciana, et al., Ru(bpy)32+ covalently doped silica nanoparticles as multicenter tunable structures for electrochemiluminescence amplification, J. Am. Chem. Soc. 131 (2009) 2260-2267.

    10. [10]

      [10] H. Wei, E.K. Wang, Solid-state electrochemiluminescence of tris(2,2'-bipyridyl) ruthenium, TrAC Trends Anal. Chem. 27 (2008) 447-459.

    11. [11]

      [11] L.H. Zhang, S.J. Dong, Electrogenerated chemiluminescence sensing platform using Ru(bpy)32+ doped silica nanoparticles and carbon nanotubes, Electrochem. Commum. 8 (2006) 1687-1691.

    12. [12]

      [12] S.J. Guo, E.K. Wang, A novel sensitive solid-state electrochemiluminescence sensor material: Ru(bpy)32+ doped SiO2@MWNTs coaxial nanocable, Electrochem. Commun. 9 (2007) 1252-1257.

    13. [13]

      [13] Z. Xu, J. Yu, A novel solid-state electrochemiluminescence sensor based on Ru(bpy)32+ immobilization on TiO2 nanotube arrays and its application for detection of amines in water, Nanotechnology 21 (2010) 245501-245506.

    14. [14]

      [14] D.A. Dikin, S. Stankovich, E.J. Zimney, et al., Preparation and characterization of graphene oxide paper, Nature 448 (2007) 457-460.

    15. [15]

      [15] D. Chen, H.B. Feng, J.H. Li, Graphene oxide: preparation,functionalization, and electrochemical applications, Chem. Rev. 112 (2012) 6027-6053.

    16. [16]

      [16] Y.Q. Yu, M. Zhou, W. Shen, et al., Synthesis of electrochemiluminescent graphene oxide functionalized with a ruthenium(Ⅱ) complex and its use in the detection of tripropylamine, Carbon 50 (2012) 2539-2545.

    17. [17]

      [17] Y.L. Yuan, H.J. Li, S. Han, et al., Immobilization of tris(1,10-phenanthroline) ruthenium with graphene oxide for electrochemiluminescent analysis, Anal. Chim. Acta 720 (2012) 38-42.

    18. [18]

      [18] Y. Wang, J. Lu, L.H. Tang, et al., Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds, Anal. Chem. 81 (2009) 9710-9715.

    19. [19]

      [19] D. Chen, L.H. Tang, J.H. Li, Graphene-based materials in electrochemistry, Chem. Soc. Rev. 39 (2010) 3157-3180.

    20. [20]

      [20] L. Kou, C. Gao, Making silica nanoparticle-covered graphene oxide nanohybrids as general building blocks for large-area superhydrophilic coatings, Nanoscale 3 (2011) 519-528.

    21. [21]

      [21] W.B. Lu, Y.L. Luo, G.H. Chang, X.P. Sun, Synthesis of functional SiO2-coated graphene oxide nanosheets decorated with Ag nanoparticles for H2O2 and glucose detection, Biosens. Bioelectron. 26 (2011) 4791-4797.

    22. [22]

      [22] S. Watcharotone, D.A. Dikin, S. Stankovich, et al., Graphene-silica composite thin films as transparent conductors, Nano Lett. 7 (2007) 1888-1892.

    23. [23]

      [23] W.L. Zhang, H.J. Choi, Silica-graphene oxide hybrid composite particles and their electroresponsive characteristics, Langmuir 28 (2012) 7055-7062.

    24. [24]

      [24] Y.B. Zeng, Y. Zhou, L. Kong, et al., A novelcompositeof SiO2-coated graphene oxide and molecularly imprinted polymers for electrochemical sensing dopamine, Biosens. Bioelectron. 45 (2013) 25-33.

    25. [25]

      [25] Z. Guo, Y. Shen, M. Wang, et al., Electrochemistry and electrogenerated chemiluminescence of SiO2 nanoparticles/tris(2,2'-bipyridyl)ruthenium(Ⅱ) multilayer films on indium tin oxide electrodes, Anal. Chem. 76 (2004) 184-191.

    26. [26]

      [26] L.H. Zhang, S.J. Dong, Electrogenerated chemiluminescence sensors using Ru(bpy)32+ doped in silica nanoparticles, Anal. Chem. 78 (2006) 5119-5123.

    27. [27]

      [27] H.Y. Wang, G.B. Xu, S.J. Dong, Electrochemiluminescence sensor using tris(2,2'-bipyridyl)ruthenium(Ⅱ) immobilized in Eastman-AQ55D-silica composite thinfilms, Anal. Chim. Acta 480 (2003) 285-290.

  • 加载中
    1. [1]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    2. [2]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    3. [3]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    4. [4]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    5. [5]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    6. [6]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    7. [7]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    8. [8]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    9. [9]

      Yuyang ZhouZiwang MaoJing-Juan Xu . Recent advances in near infrared (NIR) electrochemiluminescence luminophores. Chinese Chemical Letters, 2024, 35(11): 109622-. doi: 10.1016/j.cclet.2024.109622

    10. [10]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    11. [11]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    12. [12]

      Qinghong PanHuafang ZhangQiaoling LiuDonghong HuangDa-Peng YangTianjia JiangShuyang SunXiangrong Chen . A self-powered cathodic molecular imprinting ultrasensitive photoelectrochemical tetracycline sensor via ZnO/C photoanode signal amplification. Chinese Chemical Letters, 2025, 36(1): 110169-. doi: 10.1016/j.cclet.2024.110169

    13. [13]

      Yubin FengWeihang ZhuXinting YangZhe YangChenke WeiYukai GuoAndrew K. WhittakerChun ShenYue ZhaoWenrui QuBai YangQuan Lin . Amphibian-inspired conductive ionogel stabilizing in air/water as a wearable amphibious flexible sensor for drowning alarms. Chinese Chemical Letters, 2025, 36(4): 110554-. doi: 10.1016/j.cclet.2024.110554

    14. [14]

      Yijian ZhaoJvzhe LiYunyi ShiJie HuMeiyi LiuYao ShenXinglin HouQiuyue WangQi WangZhiyi Yao . A label-free and ratiometric fluorescent sensor based on porphyrin-metal-organic frameworks for sensitive detection of ochratoxin A in cereal. Chinese Chemical Letters, 2025, 36(4): 110132-. doi: 10.1016/j.cclet.2024.110132

    15. [15]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

    16. [16]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    17. [17]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    18. [18]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    19. [19]

      Kezuo DiJie WeiLijun DingZhiying ShaoJunling ShaXilong ZhouHuadong HengXujing FengKun Wang . A wearable sensor device based on screen-printed chip with biofuel cell-driven electrochromic display for noninvasive monitoring of glucose concentration. Chinese Chemical Letters, 2025, 36(2): 109911-. doi: 10.1016/j.cclet.2024.109911

    20. [20]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

Metrics
  • PDF Downloads(0)
  • Abstract views(699)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return