Citation: Hong Zhao, Zu-Hong Lu. Detection of DNA methylation by hyperbranched rolling circle amplification and DNA microarray[J]. Chinese Chemical Letters, ;2014, 25(12): 1559-1564. doi: 10.1016/j.cclet.2014.09.010 shu

Detection of DNA methylation by hyperbranched rolling circle amplification and DNA microarray

  • Corresponding author: Hong Zhao, 
  • Received Date: 29 May 2014
    Available Online: 25 August 2014

    Fund Project: This work was supported by the Scientific Research Foundation of Mianyang Normal University (No. QD2012A10) (No. QD2012A10)Educational Commission of Sichuang Province, China (No. 13ZB0275). (No. 13ZB0275)

  • Aberrant DNAmethylation of CpG sites has been confirmed to be closely associated with carcinogenesis. Based on the hyperbranched rolling circle amplification (HRCA) and microarray techniques, a new method for qualitative detection of methylation was developed. In the present study, padlock probes hybridize the sample DNA at the methylation site to form a probe-DNA complex which is ligated and digested simultaneously by methylation specific enzymes. Only at the methylated CpG site is the padlock probe ligated successfully to form a circle template for the HRCA reaction. Utilizing the method of 3-dimensional polyacrylamide gel-based microarray, the HRCA product will be immobilized on the slide to form a DNA microarray, which can universally hybridize the Cy3-labeled oligonucleotide probe to detect the methylation status of CpG sites. To control the false positive signals, DNA ligase and temperature of ligation/digestion are optimized. Methylation status of four CpG sites located in P15, Ecadherin, hMLH1 andMGMT genes were analyzed successfully with this method and all the results were compatible with that of methylation-specific PCR. Our research proves that this method is simple and inexpensive, and could be applied as a high-throughput tool to qualitatively determine the methylation status of CpG sites.
  • 加载中
    1. [1]

      [1] M.R. Rountree, K.E. Bachman, J.G. Herman, S.B. Baylin, DNA methylation, chromatin inheritance, and cancer, Oncogene 20 (2001) 3156-3165.

    2. [2]

      [2] P.A. Jones, Epigenetics in carcinogenesis and cancer prevention, Ann. N. Y. Acad. Sci. 983 (2003) 213-219.

    3. [3]

      [3] J.G. Herman, S.B. Baylin, Promoter-region hypermethylation and gene silencing in human cancer, Curr. Top. Microbiol. Immunol. 249 (2000) 35-54.

    4. [4]

      [4] M. Widschwendter, P.A. Jones, The potential prognostic, predictive, and therapeutic values of DNA methylation in cancer. Commentary re: J. Kwong et al., Promoter hypermethylation of multiple genes in nasopharyngeal carcinoma. Clin. Cancer Res., 8: 131-137, 2002, and H.-Z. Zou et al., Detection of aberrant p16 methylation in the serum of colorectal cancer patients. Clin. Cancer Res., 8: 188-191, 2002, Clin. Cancer Res. 8 (2002) 17-21.

    5. [5]

      [5] H.P. Xie, X.X. Meng, H. Su, et al., Ligase-based ultrasensitive detection of DNAzyme cleavage product using molecular beacon, Chin. Chem. Lett. 23 (2012) 1177-1180.

    6. [6]

      [6] B.Z. Yi, Q. Liu, G. Yuan, Recognition of hairpin DNA from coil DNA by electrospray mass spectrometry with annealing strategy, Chin. Chem. Lett. 23 (2012) 500-503.

    7. [7]

      [7] B. Zhang, L.D. Deng, J.F. Xing, J. Yang, A.J. Dong, Improved biocompatibility of poly(vinylpyrrolidone)-graft-poly (2-dimethylaminoethyl methacrylate)/DNA complexes by coating with bovine serum albumin, Chin. Chem. Lett. 23 (2012) 627-630.

    8. [8]

      [8] K. Wanga, S.H. Song, Y.M. Zheng, Z.Y. Li, Morphological characterization of amidinophenylporphyrins interacting with DNA by photo irradiation, Chin. Chem. Lett. 24 (2013) 1011-1013.

    9. [9]

      [9] M. Frommer, L.E. McDonald, D.S. Millar, et al., A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands, Proc. Natl. Acad. Sci. U. S. A. 89 (1992) 1827-1831.

    10. [10]

      [10] S.E. Cottrell, J. Distler, N.S. Goodman, et al., A real-time PCR assay for DNAmethylation using methylation-specific blockers, Nucleic Acids Res. 32 (2004) e10.

    11. [11]

      [11] D. Deng, G. Deng, M.F. Smith, et al., Simultaneous detection of CpG methylation and single nucleotide polymorphism by denaturing high performance liquid chromatography, Nucleic Acids Res. 30 (2002) e13.

    12. [12]

      [12] C.A. Eads, K.D. Danenberg, K. Kawakami, et al., MethyLight: a high-throughput assay to measure DNA methylation, Nucleic Acids Res. 28 (2000) e32.

    13. [13]

      [13] R.S. Gitan, H. Shi, C.M. Chen, P.S. Yan, T.H. Huang, Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis, Genome Res. 12 (2002) 158-164.

    14. [14]

      [14] M.L. Gonzalgo, P.A. Jones, Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE), Nucleic Acids Res. 25 (1997) 2529-2531.

    15. [15]

      [15] J.G. Herman, J.R. Graff, S. Myohanen, B.D. Nelkin, S.B. Baylin, Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands, Proc. Natl Acad. Sci. U. S. A. 93 (1996) 9821-9826.

    16. [16]

      [16] Z. Xiong, P.W. Laird, COBRA: a sensitive and quantitative DNA methylation assay, Nucleic Acids Res. 25 (1997) 2532-2534.

    17. [17]

      [17] A.O. Nygren, N. Ameziane, H.M. Duarte, et al., Methylation-specific MLPA (MSMLPA): simultaneous detection of CpG methylation and copy number changes of up to 40 sequences, Nucleic Acids Res. 33 (2005) e128.

    18. [18]

      [18] M.L. Li, D. Zhou, H. Zhao, J.K. Wang, Z.H. Lu, Endonuclease-rolling circle amplification-based method for sensitive analysis of DNA-binding protein, Chin. Chem. Lett. 20 (2009) 1315-1318.

    19. [19]

      [19] H. Zhao, L. Gao, J. Luo, D. Zhou, Z.H. Lu, Massively parallel display of genomic DNA fragments by rolling-circle amplification and strand displacement amplification on chip, Talanta 82 (2010) 477-482.

    20. [20]

      [20] M. Nilsson, K. Krejci, J. Koch, et al., Padlock probes reveal single-nucleotide differences, parent of origin and in situ distribution of centromeric sequences in human chromosomes 13 and 21, Nat. Genet. 16 (1997) 252-255.

    21. [21]

      [21] M. Nilsson, H. Malmgren, M. Samiotaki, et al., Padlock probes: circularizing oligonucleotides for localized DNA detection, Science 265 (1994) 2085-2088.

    22. [22]

      [22] J. Baner, M. Nilsson, M. Mendel-Hartvig, U. Landegren, Signal amplification of padlock probes by rolling circle replication, Nucleic Acids Res. 26 (1998) 5073-5078.

    23. [23]

      [23] X. Qi, S. Bakht, K.M. Devos, M.D. Gale, A. Osbourn, L-RCA (ligation-rolling circle amplification): a general method for genotyping of single nucleotide polymorphisms( SNPs), Nucleic Acids Res. 29 (2001) e116.

    24. [24]

      [24] P.M. Lizardi, X. Huang, Z. Zhu, et al., Mutation detection and single-molecule counting using isothermal rolling-circle amplification, Nat. Genet. 19 (1998) 225-232.

    25. [25]

      [25] D.Y. Zhang, M. Brandwein, T.C. Hsuih, H. Li, Amplification of target-specific, ligation dependent circular probe, Gene 211 (1998) 277-285.

    26. [26]

      [26] D.C. Thomas, G.A. Nardone, S.K. Randall, Amplification of padlock probes for DNA diagnostics by cascade rolling circle amplification or the polymerase chain reaction, Arch. Pathol. Lab. Med. 123 (1999) 1170-1176.

    27. [27]

      [27] X. Li, J. Luo, P. Xiao, et al., Genotyping of multiple single nucleotide polymorphisms with hyperbranched rolling circle amplification and microarray, Clin. Chim. Acta 399 (2009) 40-44.

  • 加载中
    1. [1]

      Kun ZouYihang XiaoJinyu YangMingxuan Wu . Facile semisynthesis of histone H3 enables nucleosome probes for investigation of histone H3K79 modifications. Chinese Chemical Letters, 2024, 35(10): 109497-. doi: 10.1016/j.cclet.2024.109497

    2. [2]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    3. [3]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    4. [4]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    5. [5]

      Zhihui ZhangRu SunChong BianHongbo WangZhen ZhaoPanpan LvJianzhong LuHaixin ZhangHulie ZengYuanyuan ChenZhijuan Cao . A dual-protease-triggered chemiluminescent probe for precise tumor imaging. Chinese Chemical Letters, 2025, 36(2): 109784-. doi: 10.1016/j.cclet.2024.109784

    6. [6]

      Tao LiuXuwei HanXueyi SunWeijie ZhangKe GaoRunan MinYuting TianCaixia Yin . An activated fluorescent probe to monitor NO fluctuation in Parkinson’s disease. Chinese Chemical Letters, 2025, 36(3): 110170-. doi: 10.1016/j.cclet.2024.110170

    7. [7]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    8. [8]

      Bin FangJiaqi YangLimin WangHaoqin LiJiaying GuoJiaxin ZhangQingyuan GuoBo PengKedi LiuMiaomiao XiHua BaiLi FuLin Li . A mitochondria-targeted H2S-activatable fluorogenic probe for tracking hepatic ischemia-reperfusion injury. Chinese Chemical Letters, 2024, 35(6): 108913-. doi: 10.1016/j.cclet.2023.108913

    9. [9]

      Linfang WangJing LiuMinghao RenWei Guo . A highly sensitive fluorescent HClO probe for discrimination between cancerous and normal cells/tissues. Chinese Chemical Letters, 2024, 35(6): 108945-. doi: 10.1016/j.cclet.2023.108945

    10. [10]

      Yang LiuLeilei ZhangKaixuan LiuLing-Ling WuHai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759

    11. [11]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    12. [12]

      Pei HuangWeijie ZhangJunping WangFangjun HuoCaixia Yin . Rapid and specific fluorescent probe visualizes dynamic correlation of Cys and HClO in OGD/R. Chinese Chemical Letters, 2025, 36(1): 109778-. doi: 10.1016/j.cclet.2024.109778

    13. [13]

      Lanyun ZhangWeisi WangYu-Qiang ZhaoRui HuangYuxun LuYing ChenLiping DuanYing Zhou . Mechanism study of the molluscicide candidate PBQ on Pomacea canaliculata using a viscosity-sensitive fluorescent probe. Chinese Chemical Letters, 2025, 36(1): 109798-. doi: 10.1016/j.cclet.2024.109798

    14. [14]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    15. [15]

      Fan ZhengRunsha XiaoShuai HuangZhikang ChenChen LaiAnyao BiHeying YaoXueping FengZihua ChenWenbin Zeng . Accurate visualization colorectal cancer by monitoring viscosity variations with a novel mitochondria-targeted fluorescent probe. Chinese Chemical Letters, 2025, 36(2): 109876-. doi: 10.1016/j.cclet.2024.109876

    16. [16]

      Xilin BaiWei DengJingjuan WangMing Zhou . Enrichment-enhanced detection strategy in the optimized monitoring system of dopamine with carbon dots-based probe. Chinese Chemical Letters, 2025, 36(2): 109959-. doi: 10.1016/j.cclet.2024.109959

    17. [17]

      Shuaige BaiShuai HuangTing LuoBin FengYanpeng FangFeiyi ChuJie DongWenbin Zeng . Debut of a responsive chemiluminescent probe for butyrylcholinesterase: Application in biological imaging and pesticide residue detection. Chinese Chemical Letters, 2025, 36(3): 110054-. doi: 10.1016/j.cclet.2024.110054

    18. [18]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    19. [19]

      Zhixiao XiongShanni QiuYuyu WangHouna DuanYi XiaoYufang XuWeiping ZhuXuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002

    20. [20]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

Metrics
  • PDF Downloads(0)
  • Abstract views(600)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return