Citation:
Chun-Jing Liu, Dinah Dutta, Lester Mitscher. Synthesis of new penicillin derivatives as drug-like molecules for biological screening[J]. Chinese Chemical Letters,
;2015, 26(1): 113-117.
doi:
10.1016/j.cclet.2014.09.008
-
Chemical modification of penicillin β-lactam ring was made. Six thiazolidine amides were produced through N4-C7 β-lactam ring opening of penicillin V methyl ester with various aliphatic, aromatic, and heterocyclic primary amines. Five 8-hydroxypenillic acid derivatives with side chains of methyl, propyl, benzyl, and diethylaminoethyl groups were yielded via β-lactam ring rearrangement from 6-aminopenicillanic acid (6-APA). Parallel synthetic methods were used for the alkylation of 8-hydroxypenillic acid and β-lactam ring opening of penicillin V methyl ester. The biological activities of the compounds were evaluated.
-
-
-
[1]
[1] K.B. Hoten, E.M. Onusko, Appropriate prescribing of oral β-lactam antibiotics, Am. Fam. Physician 62 (2000) 611-620.
-
[2]
[2] G. Lukacs, Recent Progress in the Chemical Synthesis of Antibiotics and Related Microbial Products, vol. 2, Springer, Berlin, 1993p. 621.
-
[3]
[3] G. Veinberg, M. Vorona, M. Shestakova, I. Kanepe, E. Lukevics, Design of β-lactams with mechanism based nonantibacterial activities, Curr. Med. Chem. 10 (2003) 1741-1757.
-
[4]
[4] R.R. Gupta, Topics in Heterocyclic Chemistry, Springer, Berlin/Heidelberg, 2010p. 394.
-
[5]
[5] J.D. Rothstein, S. Patel, M.R. Regan, et al., b-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression, Nature 433 (2005) 73-77.
-
[6]
[6] P.G. Sammes, Recent chemistry of the β-lactam antibiotics, Chem. Rev. 76 (1976) 113-155.
-
[7]
[7] A.K. Mukerjee, A.K. Singh, b-Lactams: retrospect and prospect, Tetrahedron 34 (1978) 1731-1767.
-
[8]
[8] G.H. Hakimelahi, K.S. Shia, C. Xue, et al., Design, synthesis, and biological evaluation of a series of β-lactam-based prodrugs, Bioorg, Med. Chem. 10 (2002) 3489- 3498.
-
[9]
[9] T.L. Gilchrist, Heterocyclic Chemistry, 2nd ed., Longman Press, Harlow, 1997.
-
[10]
[10] S. Wolfe, S. Ro, C.K. Kim, Z. Shi, Synthesis and decarboxylation of Δ2-cephem-4 4- dicarboxylic acids, Can. J. Chem. 79 (2001) 1238-1258.
-
[11]
[11] B. Alcaide, P. Almendros, C. Aragoncillo, b-Lactams: versatile building blocks for the stereoselective synthesis of non β-lactam products, Chem. Rev. 107 (2007) 4437-4492.
-
[12]
[12] B. Alcaide, P. Almendros, G. Cabrero, M.P. Ruiz, Stereoselective cyanation of 4- formyl and 4-imino-b-lactams: application to the synthesis of polyfunctionalized γ-lactams, Tetrahedron 68 (2012) 10761-10768.
-
[13]
[13] B. Alcaide, P. Almendros, A. Luna, et al., Controlled rearrangement of lactamtethered allenols with brominating reagents: a combined experimental and theoretical study on alpha-versus β-keto lactam formation, Chem. Eur. J. 17 (2011) 11559-11566.
-
[14]
[14] S. Dekeukeleire, M. D'hooghe, N. De Kimpe, Diastereoselective synthesis of bicyclic gamma-lactams via ring expansion of monocydic β-lactams, J. Org. Chem. 74 (2009) 1644-1649.
-
[15]
[15] W. Van Brabandt, N. De Kimpe, Electrophile-induced ring expansions of β-lactams toward γ-lactams, J. Org. Chem. 70 (2005) 8717-8722.
-
[16]
[16] A.K. Mukerjee, A.K. Singh, Reactions of natural and synthetic β-lactams, Synthesis- Stuttgart 9 (1975) 547-589.
-
[17]
[17] D.A. Johnson, G.A. Hardcastle Jr., Reaction of 6-aminopenicillanic acid with carbon dioxide, J. Am. Chem. Soc. 83 (1961) 3534-3535.
-
[18]
[18] R.F. Pratt,M. Dryjanski, E.S. Wun, V.M. Marathias, 8-Hydroxypenillic acid from 6- aminopenicillanic acid: a new reaction catalyzed by a class C β-lactamase, J. Am. Chem. Soc. 118 (1996) 8207-8212.
-
[19]
[19] C.C. Ruddle, T.P. Smyth, Exploring the chemistry of penicillin as a β-lactamasedependent prodrug, Org. Biomol. Chem. 5 (2007) 160-168.
-
[20]
[20] L. Heinisch, S. Wittmann, T. Stoiber, et al., Highly antibacterial active aminoacyl penicillin conjugates with acylated bis-catecholate siderophores based on secondary diamino acids and related compounds, J. Med. Chem. 45 (2002) 3032- 3040.
-
[21]
[21] A.F. Casy, A. Lipczynski, 8-Hydroxypenillic acid: NMR characteristics and facile formation from 6-aminopenicillanic acid, J. Pharm. Pharmacol. 46 (1994) 533-534.
-
[22]
[22] PubChem: https://pubchem.ncbi.nlm.nih.gov. The compound identification (CID) numbers are 24747544 (2a), 24747436 (2b), 24747499 (2c), 24747495 (2d), 24747364 (2e), 24747549 (2f), 25011528 (3), 25011526 (4a), 24747497 (4b), 24747437 (4c), 25011527 (5a), 24789294 (5b).
-
[1]
-
-
-
[1]
Wenling Yuan , Fengli Li , Zhe Chen , Qiaoxin Xu , Zhenhua Guan , Nanyu Yao , Zhengxi Hu , Junjun Liu , Yuan Zhou , Ying Ye , Yonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788
-
[2]
Peng Guo , Shicheng Dong , Xiang-Gui Zhang , Bing-Bin Yang , Jun Zhu , Ke-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052
-
[3]
Peiling Li , Qing Feng , Hongling Yuan , Qin Wang . Live Interview Recording about the Penicillin Family. University Chemistry, 2024, 39(9): 122-127. doi: 10.3866/PKU.DXHX202311022
-
[4]
Wenyu Gao , Liming Zhang , Chuang Zhao , Lixiang Liu , Xingran Yang , Jinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447
-
[5]
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
-
[6]
Yang Liu , Leilei Zhang , Kaixuan Liu , Ling-Ling Wu , Hai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759
-
[7]
Yue Sun , Liming Yang , Yaohang Cheng , Guanghui An , Guangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250
-
[8]
Rong-Nan Yi , Wei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787
-
[9]
Ying-Di Hao , Zhi-Qian Lin , Xiao-Yu Guo , Jiao Liang , Can-Kun Luo , Qian-Tao Wang , Li Guo , Yong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834
-
[10]
Ruru Li , Qian Liu , Hui Li , Fengbin Sun , Zhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679
-
[11]
Huashan Huang , Jingze Chen , Luyun Zhang , Hong Yan , Siqi Li , Fen-Er Chen . Oscillatory flow reactor facilitates fast photochemical Wolff rearrangement toward synthesis of α-substituted amides in flow. Chinese Chemical Letters, 2025, 36(2): 109992-. doi: 10.1016/j.cclet.2024.109992
-
[12]
Zhen Zhang , Xue-ling Chen , Xiu-Mei Xie , Tian-Yu Gao , Jing Qin , Jun-Jie Li , Chao Feng , Da-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056
-
[13]
Qinghong Zhang , Qiao Zhao , Xiaodi Wu , Li Wang , Kairui Shen , Yuchen Hua , Cheng Gao , Yu Zhang , Mei Peng , Kai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167
-
[14]
Peiyan Zhu , Yanyan Yang , Hui Li , Jinhua Wang , Shiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533
-
[15]
Yuxin Li , Chengbin Liu , Qiuju Li , Shun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541
-
[16]
Jian Peng , Yue Jiang , Shuangyu Wu , Yanran Cheng , Jingyu Liang , Yixin Wang , Zhuo Li , Sijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903
-
[17]
Zhiqiang Liu , Qiang Gao , Wei Shen , Meifeng Xu , Yunxin Li , Weilin Hou , Hai-Wei Shi , Yaozuo Yuan , Erwin Adams , Hian Kee Lee , Sheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338
-
[18]
Xiaotao Jin , Yanlan Wang , Yingping Huang , Di Huang , Xiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499
-
[19]
Shenghui Tu , Anru Liu , Hongxiang Zhang , Lu Sun , Minghui Luo , Shan Huang , Ting Huang , Honggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761
-
[20]
Shukun Le , Peng Wang , Yuhao Liu , Mutao Xu , Quansheng Liu , Qijie Jin , Jie Miao , Chengzhang Zhu , Haitao Xu . High-efficiency Fe(Ⅲ)-doped ultrathin VO2 nanobelts boosted peroxydisulfate activation for actual antibiotics photodegradation. Chinese Chemical Letters, 2025, 36(3): 110087-. doi: 10.1016/j.cclet.2024.110087
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(696)
- HTML views(0)