Citation: Chun-Jing Liu, Dinah Dutta, Lester Mitscher. Synthesis of new penicillin derivatives as drug-like molecules for biological screening[J]. Chinese Chemical Letters, ;2015, 26(1): 113-117. doi: 10.1016/j.cclet.2014.09.008 shu

Synthesis of new penicillin derivatives as drug-like molecules for biological screening

  • Corresponding author: Chun-Jing Liu, 
  • Received Date: 22 May 2014
    Available Online: 22 August 2014

  • Chemical modification of penicillin β-lactam ring was made. Six thiazolidine amides were produced through N4-C7 β-lactam ring opening of penicillin V methyl ester with various aliphatic, aromatic, and heterocyclic primary amines. Five 8-hydroxypenillic acid derivatives with side chains of methyl, propyl, benzyl, and diethylaminoethyl groups were yielded via β-lactam ring rearrangement from 6-aminopenicillanic acid (6-APA). Parallel synthetic methods were used for the alkylation of 8-hydroxypenillic acid and β-lactam ring opening of penicillin V methyl ester. The biological activities of the compounds were evaluated.
  • 加载中
    1. [1]

      [1] K.B. Hoten, E.M. Onusko, Appropriate prescribing of oral β-lactam antibiotics, Am. Fam. Physician 62 (2000) 611-620.

    2. [2]

      [2] G. Lukacs, Recent Progress in the Chemical Synthesis of Antibiotics and Related Microbial Products, vol. 2, Springer, Berlin, 1993p. 621.

    3. [3]

      [3] G. Veinberg, M. Vorona, M. Shestakova, I. Kanepe, E. Lukevics, Design of β-lactams with mechanism based nonantibacterial activities, Curr. Med. Chem. 10 (2003) 1741-1757.

    4. [4]

      [4] R.R. Gupta, Topics in Heterocyclic Chemistry, Springer, Berlin/Heidelberg, 2010p. 394.

    5. [5]

      [5] J.D. Rothstein, S. Patel, M.R. Regan, et al., b-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression, Nature 433 (2005) 73-77.

    6. [6]

      [6] P.G. Sammes, Recent chemistry of the β-lactam antibiotics, Chem. Rev. 76 (1976) 113-155.

    7. [7]

      [7] A.K. Mukerjee, A.K. Singh, b-Lactams: retrospect and prospect, Tetrahedron 34 (1978) 1731-1767.

    8. [8]

      [8] G.H. Hakimelahi, K.S. Shia, C. Xue, et al., Design, synthesis, and biological evaluation of a series of β-lactam-based prodrugs, Bioorg, Med. Chem. 10 (2002) 3489- 3498.

    9. [9]

      [9] T.L. Gilchrist, Heterocyclic Chemistry, 2nd ed., Longman Press, Harlow, 1997.

    10. [10]

      [10] S. Wolfe, S. Ro, C.K. Kim, Z. Shi, Synthesis and decarboxylation of Δ2-cephem-4 4- dicarboxylic acids, Can. J. Chem. 79 (2001) 1238-1258.

    11. [11]

      [11] B. Alcaide, P. Almendros, C. Aragoncillo, b-Lactams: versatile building blocks for the stereoselective synthesis of non β-lactam products, Chem. Rev. 107 (2007) 4437-4492.

    12. [12]

      [12] B. Alcaide, P. Almendros, G. Cabrero, M.P. Ruiz, Stereoselective cyanation of 4- formyl and 4-imino-b-lactams: application to the synthesis of polyfunctionalized γ-lactams, Tetrahedron 68 (2012) 10761-10768.

    13. [13]

      [13] B. Alcaide, P. Almendros, A. Luna, et al., Controlled rearrangement of lactamtethered allenols with brominating reagents: a combined experimental and theoretical study on alpha-versus β-keto lactam formation, Chem. Eur. J. 17 (2011) 11559-11566.

    14. [14]

      [14] S. Dekeukeleire, M. D'hooghe, N. De Kimpe, Diastereoselective synthesis of bicyclic gamma-lactams via ring expansion of monocydic β-lactams, J. Org. Chem. 74 (2009) 1644-1649.

    15. [15]

      [15] W. Van Brabandt, N. De Kimpe, Electrophile-induced ring expansions of β-lactams toward γ-lactams, J. Org. Chem. 70 (2005) 8717-8722.

    16. [16]

      [16] A.K. Mukerjee, A.K. Singh, Reactions of natural and synthetic β-lactams, Synthesis- Stuttgart 9 (1975) 547-589.

    17. [17]

      [17] D.A. Johnson, G.A. Hardcastle Jr., Reaction of 6-aminopenicillanic acid with carbon dioxide, J. Am. Chem. Soc. 83 (1961) 3534-3535.

    18. [18]

      [18] R.F. Pratt,M. Dryjanski, E.S. Wun, V.M. Marathias, 8-Hydroxypenillic acid from 6- aminopenicillanic acid: a new reaction catalyzed by a class C β-lactamase, J. Am. Chem. Soc. 118 (1996) 8207-8212.

    19. [19]

      [19] C.C. Ruddle, T.P. Smyth, Exploring the chemistry of penicillin as a β-lactamasedependent prodrug, Org. Biomol. Chem. 5 (2007) 160-168.

    20. [20]

      [20] L. Heinisch, S. Wittmann, T. Stoiber, et al., Highly antibacterial active aminoacyl penicillin conjugates with acylated bis-catecholate siderophores based on secondary diamino acids and related compounds, J. Med. Chem. 45 (2002) 3032- 3040.

    21. [21]

      [21] A.F. Casy, A. Lipczynski, 8-Hydroxypenillic acid: NMR characteristics and facile formation from 6-aminopenicillanic acid, J. Pharm. Pharmacol. 46 (1994) 533-534.

    22. [22]

      [22] PubChem: https://pubchem.ncbi.nlm.nih.gov. The compound identification (CID) numbers are 24747544 (2a), 24747436 (2b), 24747499 (2c), 24747495 (2d), 24747364 (2e), 24747549 (2f), 25011528 (3), 25011526 (4a), 24747497 (4b), 24747437 (4c), 25011527 (5a), 24789294 (5b).

  • 加载中
    1. [1]

      Wenling YuanFengli LiZhe ChenQiaoxin XuZhenhua GuanNanyu YaoZhengxi HuJunjun LiuYuan ZhouYing YeYonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788

    2. [2]

      Peng GuoShicheng DongXiang-Gui ZhangBing-Bin YangJun ZhuKe-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052

    3. [3]

      Peiling Li Qing Feng Hongling Yuan Qin Wang . Live Interview Recording about the Penicillin Family. University Chemistry, 2024, 39(9): 122-127. doi: 10.3866/PKU.DXHX202311022

    4. [4]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    5. [5]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    6. [6]

      Yang LiuLeilei ZhangKaixuan LiuLing-Ling WuHai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759

    7. [7]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    8. [8]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    9. [9]

      Ying-Di HaoZhi-Qian LinXiao-Yu GuoJiao LiangCan-Kun LuoQian-Tao WangLi GuoYong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834

    10. [10]

      Ruru LiQian LiuHui LiFengbin SunZhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679

    11. [11]

      Huashan HuangJingze ChenLuyun ZhangHong YanSiqi LiFen-Er Chen . Oscillatory flow reactor facilitates fast photochemical Wolff rearrangement toward synthesis of α-substituted amides in flow. Chinese Chemical Letters, 2025, 36(2): 109992-. doi: 10.1016/j.cclet.2024.109992

    12. [12]

      Zhen ZhangXue-ling ChenXiu-Mei XieTian-Yu GaoJing QinJun-Jie LiChao FengDa-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056

    13. [13]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    14. [14]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    15. [15]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    16. [16]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    17. [17]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    18. [18]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

    19. [19]

      Shenghui TuAnru LiuHongxiang ZhangLu SunMinghui LuoShan HuangTing HuangHonggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761

    20. [20]

      Shukun LePeng WangYuhao LiuMutao XuQuansheng LiuQijie JinJie MiaoChengzhang ZhuHaitao Xu . High-efficiency Fe(Ⅲ)-doped ultrathin VO2 nanobelts boosted peroxydisulfate activation for actual antibiotics photodegradation. Chinese Chemical Letters, 2025, 36(3): 110087-. doi: 10.1016/j.cclet.2024.110087

Metrics
  • PDF Downloads(0)
  • Abstract views(696)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return