Citation: Jayant Sindhu, Harjinder Singh, J. M. Khurana, Chetan Sharma, K. R. Aneja. Multicomponent domino process for the synthesis of some novel 5-(arylidene)-3-((1-aryl-1H-1,2,3-triazol-4-yl)methyl)-thiazolidine-2,4-diones using PEG-400 as an efficient reaction medium and their antimicrobial evaluation[J]. Chinese Chemical Letters, ;2015, 26(1): 50-54. doi: 10.1016/j.cclet.2014.09.006 shu

Multicomponent domino process for the synthesis of some novel 5-(arylidene)-3-((1-aryl-1H-1,2,3-triazol-4-yl)methyl)-thiazolidine-2,4-diones using PEG-400 as an efficient reaction medium and their antimicrobial evaluation

  • Corresponding author: J. M. Khurana, 
  • Received Date: 16 May 2014
    Available Online: 29 August 2014

  • A series of novel thiazolidinedione-triazole hybrids were synthesized by one pot reaction between thiazolidine-2,4-dione, substituted aryl aldehydes, propargyl bromide and substituted aryl azides using piperidine, CuSO4·5H2O and sodium ascorbate as catalysts in PEG-400 as a highly efficient and green media. These thiazolidinedione-triazole hybrids were subjected to in vitro antibacterial activity against four strains namely, Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa and antifungal activity against two fungal strains namely, Aspergillus niger and Aspergillus flavus.
  • 加载中
    1. [1]

      [1] F.L. Gouveia, R.M.B. De Oliveira, T.B. De Oliveira, et al., Synthesis, antimicrobial and cytotoxic activities of some 5-arylidene-4-thioxo-thiazolidine-2-ones, Eur. J. Med. Chem. 44 (2009) 2038-2043.

    2. [2]

      [2] E.M. Guantai, K. Ncokazi, T.J. Egan, et al., Design, synthesis and in vitro antimalarial evaluation of triazole-linked chalcone and dienone hybrid compounds, Bioorg. Med. Chem. 18 (2010) 8243-8256.

    3. [3]

      [3] C.A. Fraga, Drug hybridization strategies: before or after lead identification? Expert Opin. Drug Discov. 4 (2009) 605-609.

    4. [4]

      [4] J.E. Biggs-Houck, A. Younai, J.T. Shaw, Recent advances in multicomponent reactions for diversity-oriented synthesis, Curr. Opin. Chem. Biol. 14 (2010) 371-382.

    5. [5]

      [5] L.A. Marcaurelle, M.A. Foley, The evolving role of molecular diversity in drug discovery, Curr. Opin. Chem. Biol. 14 (2010) 285-288.

    6. [6]

      [6] N. Dahan-Farkas, C. Langley, A.L. Rousseau, et al., 6-Substituted imidazo[1,2- a]pyridines: synthesis and biological activity against colon cancer cell lines HT-29 and Caco-2, Eur. J. Med. Chem. 46 (2011) 4573-4583.

    7. [7]

      [7] (a) D.J. Ramón, M. Yus, Asymmetric multicomponent reactions (AMCRs): the new frontier, Angew. Chem. Int. Ed. Engl. 44 (2005) 1602-1634;

    8. [8]

      (b) C. Hulme, V. Gore, Multi-component reactions: emerging chemistry in drug discovery ‘from xylocain to crixivan', Curr. Med. Chem. 10 (2003) 51-80;

    9. [9]

      (c) P. Salehi, D.I. MaGee, M. Dabiri, L. Torkian, J. Donahue, Combining clickmulticomponent reaction: one-pot synthesis of triazolyl methoxy-phenyl indazolo[ 2,1-b] phthalazine-trione derivatives, Mol. Divers. 16 (2012) 231-240;

    10. [10]

      (d) P. Salehi, M. Dabiri, M. Koohshari, S.K. Movahed, M. Bararjanian, One-pot synthesis of 1,2,3-triazole linked dihydropyrimidinones via Huisgen 1,3-dipolar/Biginelli cycloaddition, Mol. Divers. 15 (2011) 833-837;

    11. [11]

      (e) F.R. Charati, Efficient synthesis of functionalized hydroindoles via catalystfree multicomponent reactions of ninhydrin in water, Chin. Chem. Lett. 25 (2014) 169-171;

    12. [12]

      (f) Z. Hossaini, F.R. Charati, M.E. Moghadam, F.M. Kochaksaraee, Expeditious solvent-free synthesis of 1, 3-thiazolanes via multicomponent reactions, Chin. Chem. Lett. 25 (2014) 794-796.

    13. [13]

      [8] (a) J. Sindhu, H. Singh, J.M. Khurana, C. Sharma, K.R. Aneja, Multicomponent synthesis of novel 2-aryl-5-((1-aryl-1H-1,2,3-triazol-4-yl)methylthio)-1,3,4-oxadiazoles using CuI as catalyst and their antimicrobial evaluation, Aust. J. Chem. 66 (2013) 710-717;

    14. [14]

      (b) H. Singh, J. Sindhu, J.M. Khurana, C. Sharma, K.R. Aneja, A facile eco-friendly one-pot five-component synthesis of novel 1,2,3-triazole-linked pentasubstituted 1,4-dihydropyridines and their biological and photophysical studies, Aust. J. Chem. 66 (2013) 1088-1096;

    15. [15]

      (c) J. Sindhu, H. Singh, J.M. Khurana, A green, multicomponent, regio- and stereoselective 1,3-dipolar cycloaddition of azides and azomethine ylides generated in situ with bifunctional dipolarophiles using PEG-400, Mol. Divers. 18 (2014) 345-355.

    16. [16]

      [9] J. Chen, S.K. Spear, J.G. Huddleston, R.D. Rogers, Polyethylene glycol and solutions of polyethylene glycol as green reaction media, Green Chem. 7 (2005) 64-82.

    17. [17]

      [10] P. Ferravoschi, A. Fiecchi, P. Grisenti, E. Santaniello, S. Trave, Polyethylene glycols as solvents for anionic activation: synthesis of thioacetates by means of potassium thioacetate in polyethylene glycol 400, Synth. Commun. 17 (1987) 1569- 1575.

    18. [18]

      [11] J.R. Blanton, The selective reduction of aldehydes using polyethylene glycol- sodium borohydride derivatives as phase transfer reagents, Synth. Commun. 27 (1997) 2093-2102.

    19. [19]

      [12] S. Chandrasekhar, Ch. Narsihmulu, S.S. Sultana, N.R.K. Reddy, Poly(ethylene glycol) (PEG) as a reusable solvent medium for organic synthesis, application in the Heck reaction, Org. Lett. 4 (2002) 4399-4401.

    20. [20]

      [13] S. Chandrasekhar, Ch. Narsihmulu, S.S. Sultana, N.R.K. Reddy, Osmium tetroxide in poly(ethylene glycol) (PEG): a recyclable reaction medium for rapid asymmetric dihydroxylation under sharpless conditions, Chem. Commun. (2003) 1716- 1717.

    21. [21]

      [14] (a) V.V. Namboodiri, R.S. Varma, Microwave-accelerated Suzuki cross-coupling reaction in polyethylene glycol (PEG), Green Chem. 3 (2001) 146-148;

    22. [22]

      (b) S. Gaddam, H.R. Kasireddy, K. Konkala, R. Katla, N.Y.V. Durga, Synthesis of Nsubstituted- 2-aminobenzothiazoles using nano copper oxide as a recyclable catalyst under ligand-free conditions, in reusable PEG-400 medium, Chin. Chem. Lett. 5 (2014) 732-736.

    23. [23]

      [15] A. Haimov, R. Neumann, Polyethylene glycol as a non-ionic liquid solvent for polyoxometalate catalyzed aerobic oxidation, Chem. Commun. (2002) 876-877.

    24. [24]

      [16] S. Chandrasekhar, Ch. Narsihmulu, G. Chandrasekhar, T. Shyamsundar, Pd/CaCO3 in liquid poly(ethylene glycol) (PEG): an easy and efficient recycle system for partial reduction of alkynes to cis-olefins under a hydrogen atmosphere, Tetrahedron Lett. 45 (2004) 2421-2423.

    25. [25]

      [17] S.R. Pattana, P. Kekareb, A. Patilc, A. Nikaljec, B.S. Kitturd, Studies on the synthesis of novel 2,4-thiazolidinedione derivatives with antidiabetic activity, Iran. J. Pharm. Sci. 5 (2009) 225-230.

    26. [26]

      [18] R. Ottana`, R. Maccari, M. Giglio, et al., Identification of 5-arylidene-4-thiazolidinone derivatives endowed with dual activity as aldose reductase inhibitors and antioxidant agents for the treatment of diabetic complications, Eur. J. Med. Chem. 46 (2011) 2797-2806.

    27. [27]

      [19] A. Andreani, M. Rambaldi, A. Locatelli, et al., Synthesis of lactams with potential cardiotonic activity, Eur. J. Med. Chem. 28 (1993) 825-829.

    28. [28]

      [20] C.D. Barros, A.A. Amato, T.B. Oliveira, et al., Synthesis and anti-inflammatory activity of new arylidene-thiazolidine-2,4-diones as PPARgamma ligands, Bioorg. Med. Chem. 18 (2010) 3805-3811.

    29. [29]

      [21] Z. Beharry, M. Zemskova, S. Mahajan, et al., Novel benzylidene-thiazolidine-2,4- diones inhibit Pim protein kinase activity and induce cell cycle arrest in leukemia and prostate cancer cells, Mol. Cancer Ther. 8 (2009) 1473-1483.

    30. [30]

      [22] W.T. Sing, C.L. Lee, S.L. Yeo, S.P. Lim, M.M. Sim, Arylalkylidene rhodanine with bulky and hydrophobic functional group as selective HCV NS3 protease inhibitor, Bioorg. Med. Chem. Lett. 11 (2001) 91-94.

    31. [31]

      [23] E.B. Grant, D. Guiadeen, E.Z. Baum, et al., The synthesis and SAR of rhodanines as novel class C beta-lactamase inhibitors, Bioorg. Med. Chem. Lett. 10 (2000) 2179-2182.

    32. [32]

      [24] N.S. Cutshall, C. O'Day, M. Prezhdo, Rhodanine derivatives as inhibitors of JSP-1, Bioorg. Med. Chem. Lett. 15 (2005) 3374-3379.

    33. [33]

      [25] S.V. Sambasivarao, L.K. Soni, A.K. Gupta, P. Hanumantharao, Quantitative structure- activity analysis of 5-arylidene-2,4-thiazolidinediones as aldose reductase inhibitors, Bioorg. Med. Chem. Lett. 16 (2006) 512-520.

    34. [34]

      [26] R. Maccari, P. Paoli, R. Ottana, et al., 5-Arylidene-2,4-thiazolidinediones as inhibitors of protein tyrosine phosphatases, Bioorg. Med. Chem. 15 (2007) 5137-5149.

    35. [35]

      [27] V.R. Avupati, R.P. Yejella, A. Akula, et al., Synthesis, characterization and biological evaluation of some novel 2,4-thiazolidinediones as potential cytotoxic, antimicrobial and antihyperglycemic agents, Bioorg. Med. Chem. Lett. 22 (2012) 6442- 6450.

    36. [36]

      [28] J.D. Peuler, S.M. Phare, A.R. Lannussi, M.J. Hoderek, Differential inhibitory effects of antidiabetic drugs on arterial smooth muscle cell proliferation, Am. J. Hypertens. 9 (1996) 188-192.

    37. [37]

      [29] L.A. Dakin, M.H. Block, H. Chen, et al., Discovery of novel benzylidene-1,3- thiazolidine-2,4-diones as potent and selective inhibitors of the PIM-1, PIM-2, and PIM-3 protein kinases, Bioorg. Med. Chem. Lett. 22 (2012) 4599-4604.

    38. [38]

      [30] C. Gill, G. Jadhav, M. Shaikh, et al., Clubbed [1-3] triazoles by fluorine benzimidazole: a novel approach to H37Rv inhibitors as a potential treatment for tuberculosis, Bioorg. Med. Chem. Lett. 18 (2008) 6244-6247.

    39. [39]

      [31] F. de, C. da Silva, M.C.B.V. de Souza, I.I.P. Frugulhetti, et al., Synthesis, HIV-RT inhibitory activity and SAR of 1-benzyl-1H-1, 2,3-triazole derivatives of carbohydrates, Eur. J. Med. Chem. 44 (2009) 373-383.

    40. [40]

      [32] N.G. Aher, V.S. Pore, N.N. Mishra, et al., Synthesis and antifungal activity of 1,2,3- triazole containing fluconazole analogues, Bioorg. Med. Chem. Lett. 19 (2009) 759-763.

    41. [41]

      [33] B.S. Holla, M. Mahalinga, M.S. Karthikeyan, et al., Synthesis, characterization and antimicrobial activity of some substituted 1,2,3-triazoles, Eur. J. Med. Chem. 40 (2005) 1173-1178.

    42. [42]

      [34] M.S. Alam, J. Huang, F. Ozoe, F. Matsumura, Y. Ozoe, Synthesis, 3D-QSAR, and docking studies of 1-phenyl-1H-1,2,3-triazoles as selective antagonists for beta3 over alpha1beta2gamma2 GABA receptors, Bioorg. Med. Chem. 15 (2007) 5090- 5104.

    43. [43]

      [35] R. Périon, V. Ferrières, M.I. García-Moreno, et al., 1,2,3-Triazoles and related glycoconjugates as new glycosidase inhibitors, Tetrahedron 61 (2005) 9118- 9128.

    44. [44]

      [36] A. Kamal, N. Shankaraiah, V. Devaiah, et al., Synthesis of 1,2,3-triazole-linked pyrrolobenzodiazepine conjugates employing ‘click' chemistry: DNA-binding affinity and anticancer activity, Bioorg. Med. Chem. Lett. 18 (2008) 1468-1473.

    45. [45]

      [37] H.C. Kolb, K.B. Sharpless, The growing impact of click chemistry on drug discovery, Drug Discov. Today 8 (2003) 1128-1137.

    46. [46]

      [38] N.S. Vatmurge, B.G. Hazra, V.S. Pore, et al., Deshpande, synthesis and antimicrobial activity of beta-lactam-bile acid conjugates linked via triazole, Bioorg. Med. Chem. Lett. 18 (2008) 2043-2047.

    47. [47]

      [39] M. Whiting, J. Muldoon, Y.C. Lin, et al., Inhibitors of HIV-1 protease by using in situ click chemistry, Angew. Chem. Int. Ed. 45 (2006) 1435-1439.

    48. [48]

      [40] (a) J. Zhang, H. Zhang, W.X. Cai, et al., ‘Click' D(1) receptor agonists with a 5- HT(1A) receptor pharmacophore producing D(2) receptor activity, Bioorg. Med. Chem. 17 (2009) 4873-4880; (b) R. Jagasia, J.M. Holub, M. Bollinger, K. Kirshenbaum, M.G. Finn, Peptide cyclization and cyclodimerization by Cu(I)-mediated azide-alkyne cycloaddition, J. Org. Chem. 74 (2009) 2964-2974.

    49. [49]

      [41] K. Kumar, S. Sagar, L. Esau, M. Kaur, V. Kumar, Synthesis of novel 1H-1,2,3-triazole tethered C-5 substituted uracil-isatin conjugates and their cytotoxic evaluation, Eur. J. Med. Chem. 58 (2012) 153-159.

    50. [50]

      [42] (a) H. Singh, J. Sindhu, J.M. Khurana, Efficient, green and regioselective synthesis of 1,4,5-trisubstituted-1,2,3-triazoles in ionic liquid [bmim]BF4 and in taskspecific basic ionic liquid [bmim]OH, J. Iran. Chem. Soc. 10 (2013) 883-888;

    51. [51]

      (b) H. Singh, J. Sindhu, J.M. Khurana, Synthesis of biologically as well as industrially important 1,4,5-trisubstituted-1,2,3-triazoles using a highly efficient, green and recyclable DBU-H2O catalytic system, RSC Adv. 3 (2013) 22360-22366;

    52. [52]

      (c) H. Singh, J. Sindhu, J.M. Khurana, C. Sharma, K.R. Aneja, Ultrasound promoted one pot synthesis of novel fluorescent triazolyl spirocyclic oxindoles using DBU based task specific ionic liquids and their antimicrobial activity, Eur. J. Med. Chem. 77 (2014) 145-154;

    53. [53]

      (d) H. Singh, S. Kumari, J.M. Khurana, A new green approach for the synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthene-11-one derivatives using task specific acidic ionic liquid [NMP]H2PO4, Chin. Chem. Lett. 25 (2014) 1336-1340.

    54. [54]

      [43] N.D. Obushak, N.T. Pokhodylo, N.I. Pidlypnyi, V.S. Matiichuk, Synthesis of 1,2,4- and 1,3,4-oxadiazoles from 1-aryl-5-methyl-1H-1,2,3-triazole-4-carbonyl chlorides, Russ. J. Org. Chem. 44 (2008) 1522-1527.

    55. [55]

      [44] K.R. Aneja, C. Sharma, R. Joshi, Fungal infection of the ear: a common problem in the North Eastern part of Haryana, Int. J. Pediatr. Otorhinolaryngol. 74 (2010) 604-607.

    56. [56]

      [45] I. Ahmad, A.Z. Beg, Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens, J. Ethnopharmacol. 74 (2001) 113-123.

    57. [57]

      [46] J.M. Andrews, Determination of minimum inhibitory concentrations, J. Antimicrob. Chemother. 48 (2001) 5-16.

    58. [58]

      [47] National Committee for Clinical Laboratory Standards, Method for Dilution Antimicrobial Susceptibility Test for Bacteria that Grow Aerobically; Approved Standards, Villanova, PA, fifth ed., 2000.

    59. [59]

      [48] S.K.S. Al-Burtamani, M.O. Fatope, R.G. Marwah, A.K. Onifade, S.H. Al-Saidi, Chemical composition, antibacterial and antifungal activities of the essential oil of Haplophyllum tuberculatum from Oman, J. Ethnopharmocol. 96 (2005) 107-112.

  • 加载中
    1. [1]

      Yue RenKang LiYi-Zi WangShao-Peng ZhaoShu-Min PanHaojie FuMengfan JingYaming WangFengyuan YangChuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468

    2. [2]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    3. [3]

      Xiaoliu LiangChunliu HuangHui LiuHu ChenJiabao ShouHongwei ChengGang Liu . Natural hydrogel dressings in wound care: Design, advances, and perspectives. Chinese Chemical Letters, 2024, 35(10): 109442-. doi: 10.1016/j.cclet.2023.109442

    4. [4]

      Haijun ShenYi QiaoChun ZhangYane MaJialing ChenYingying CaoWenna Zheng . A matrix metalloproteinase-sensitive hydrogel combined with photothermal therapy for transdermal delivery of deferoxamine to accelerate diabetic pressure ulcer healing. Chinese Chemical Letters, 2024, 35(12): 110283-. doi: 10.1016/j.cclet.2024.110283

    5. [5]

      Wen ZhongDan ZhengXukun LiaoYadi ZhouYan JiangTing GaoMing LiChengli Yang . Elaborate construction of pH-sensitive polymyxin B loaded nanoparticles for safe and effective treatment of carbapenem-resistant Klebsiella pneumoniae. Chinese Chemical Letters, 2025, 36(3): 110448-. doi: 10.1016/j.cclet.2024.110448

    6. [6]

      Yueying WangJianming XiongLinwei XinYuanyuan LiHe HuangWenjun Miao . Photosensitizer-synergized g-carbon nitride nanosheets with enhanced photocatalytic activity for eradicating drug-resistant bacteria and promoting wound healing. Chinese Chemical Letters, 2025, 36(4): 110003-. doi: 10.1016/j.cclet.2024.110003

    7. [7]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    8. [8]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    9. [9]

      Wei-Tao DouQing-Wen ZengYan KangHaidong JiaYulian NiuJinglong WangLin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995

    10. [10]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    11. [11]

      Yun-Feng LiuHui-Fang DuYa-Hui ZhangZhi-Qin LiuXiao-Qian QiDu-Qiang LuoFei Cao . Chaeglobol A, an unusual octocyclic sterol with antifungal activity from the marine-derived fungus Chaetomium globosum HBU-45. Chinese Chemical Letters, 2025, 36(3): 109858-. doi: 10.1016/j.cclet.2024.109858

    12. [12]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    13. [13]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    14. [14]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    15. [15]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    16. [16]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    17. [17]

      Xingyu ChenSihui ZhuangWeiyao YanZhengli ZengJianguo FengHongen CaoLei Yu . Synthesis, antibacterial evaluation, and safety assessment of Se@PLA as a potent bactericide against Xanthomonas oryzae pv. oryzae. Chinese Chemical Letters, 2024, 35(10): 109635-. doi: 10.1016/j.cclet.2024.109635

    18. [18]

      Mianling YangMeehyein KimPeng Zhan . Modular miniaturized synthesis and in situ biological evaluation facilitate rapid discovery of potent MraY inhibitors as antibacterial agents. Chinese Chemical Letters, 2025, 36(2): 110455-. doi: 10.1016/j.cclet.2024.110455

    19. [19]

      Lingfeng ZhengChengyuan LvWenlin CaiQingze PanZuokai WangWenkai LiuJiangli FanXiaojun Peng . A single-component LED excited enone photoinitiator for colorless and transparent antibacterial film preparation. Chinese Chemical Letters, 2025, 36(4): 109922-. doi: 10.1016/j.cclet.2024.109922

    20. [20]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

Metrics
  • PDF Downloads(0)
  • Abstract views(809)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return