Citation: Mohammad Javaherian, Foad Kazemi, Masoumeh Ghaemi. A dicationic, podand-like, ionic liquid water system accelerated copper-catalyzed azide-alkyne click reaction[J]. Chinese Chemical Letters, ;2014, 25(12): 1643-1647. doi: 10.1016/j.cclet.2014.09.005 shu

A dicationic, podand-like, ionic liquid water system accelerated copper-catalyzed azide-alkyne click reaction

  • Corresponding author: Mohammad Javaherian, 
  • Received Date: 8 April 2014
    Available Online: 30 July 2014

    Fund Project: Authors thank the Shahid Chamran University of Ahvaz for its financial support (No. 2013). (No. 2013)

  • In this work, an effective, task specific, dicationic, podand-like ionic liquid was synthesized and applied to improve the capability features of click reaction. Moreover, to broaden the scope and decreasing the serious limitations of preparation methods of organic azides, a simple green procedure for the preparation of alkyl azides, the fundamental starting materials in click reactions, from alcohols under solvent-free conditions and microwave irradiation has been reported, for the first time.
  • 加载中
    1. [1]

      [1] K. Banert, J. Wutke, T. Rü ffer, H. Lang, The alkyne azide click chemistry as a synthetic tool for the generation of cage-like triazole compounds, Synthesis 16 (2008) 2603-2609.

    2. [2]

      [2] H.C. Kolb, M.G. Finn, K.B. Sharpless, Click chemistry: diverse chemical function from a few good reactions, Angew. Chem. Int. Ed. 40 (2001) 2004.

    3. [3]

      [3] V.V. Rostovtsev, L.G. Green, V.V. Fokin, K.B. Sharpless, Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper(I)-catalyzed ligation of azides and alkynes, Angew. Chem. Int. Ed. 41 (2002) 2596-2599.

    4. [4]

      [4] Y. Pu, H. Yuan, M. Yang, B. He, Z. Gu, Synthesis of peptide determine with polyhedral oligomeric silsesquioxane cores via click chemistry, Chin. Chem. Lett. 24 (2013) 917-920.

    5. [5]

      [5] G. Tron, T. Pirali, R. Billington, et al., Click chemistry reactions in medicinal chemistry: applications of the 1,3-dipolar cycloaddition between azides and alkynes, Med. Res. Rev 28 (2008) 278-308.

    6. [6]

      [6] H. Guo, F. Yang, Z. Jiao, J. Lin, Click synthesis and dye extraction properties of novel thiacalix[4]arene derivatives with triazolyl and hydrogen bonding groups, Chin. Chem. Lett. 24 (2013) 450-452.

    7. [7]

      [7] M. Meldal, C.W. TornØe, Cu-catalyzed azide-alkyne cycloaddition, Chem. Rev. 108 (2008) 2952-3015.

    8. [8]

      [8] A. Marra, A. Vecchi, C. Chiappe, B. Melai, A. Dondoni, Validation of the copper(I)-catalyzed azide-alkyne coupling in ionic liquids. Synthesis of a triazole-linked disaccharide as a case study, J. Org. Chem. 73 (2008) 2458-2461.

    9. [9]

      [9] A.H. Jadhav, H. kim, A mild, efficient, and selective deprotection of tert-butyldimethylsilyl (TBDMS) ethers using dicationic ionic liquid as a catalyst, Tetrahedron Lett. 53 (2012) 5338-5342.

    10. [10]

      [10] M. Messali, Z. Moussa, A.Y. Alzahrani, et al., Synthesis, characterization and the antimicrobial activity of new eco-friendly ionic liquids, Chemosphere 91 (2013) 1627-1634.

    11. [11]

      [11] B.C. Ranu, S. Banerjee, Ionic liquid as catalyst and reaction medium. The dramatic influence of a task-specific ionic liquid, [bmIm]OH, in michael addition of active methylene compounds to conjugated ketones, carboxylic esters, and nitriles, Org. Lett. 7 (2005) 3049-3052.

    12. [12]

      [12] A. Chinnappan, H. Kim, Environmentally benign catalyst: synthesis, characterization, and properties of pyridinium dicationic molten salts (ionic liquids) and use of application in esterification, Chem. Eng. J. 187 (2012) 283-288.

    13. [13]

      [13] F. Kazemi, A.R. Massah, M. Javaherian, Chemoselective and scalable preparation of alkyl tosylates under solvent-free conditions, Tetrahedron 63 (2007) 5083-5087.

    14. [14]

      [14] Q. Lin, W. Jiang, H. Fu, et al., Hydroformylation of higher olefin in halogen-free ionic liquids catalyzed by water-soluble rhodium-phosphine complexes, Appl. Catal. A: Gen. 328 (2007) 83-87.

    15. [15]

      [15] H.C. Kolb, K.B. Sharpless, The growing impact of click chemistry on drug discovery, DDT 8 (24) (2003) 1128-1137.

    16. [16]

      [16] J.R. Johansson, P. Lincoln, B. Nordé n, N. Kann, Sequential one-pot rutheniumcatalyzed azide-alkyne cycloaddition from primary alkyl halides and sodium azide, J. Org. Chem. 76 (2011) 2355-2359.

    17. [17]

      [17] N. Miyaura, K. Yamada, A. Suzuki, A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides, Tetrahedron Lett. 36 (1979) 3437-3440.

    18. [18]

      [18] D. Milstein, J.K. Stille, A general, selective, and facile method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium, J. Am. Chem. Soc. 100 (1978) 3636-3638.

    19. [19]

      [19] P.L. Golas, K. Matyjaszewski, Marrying click chemistry with polymerization: expanding the scope of polymeric materials, Chem. Soc. Rev. 39 (2010) 1338-1354.

    20. [20]

      [20] S. Chassaing, M. Kumarraja, A.S.S. Sido, P. Pale, Click chemistry in CuI-zeolites: the huisgen [3+2] cycloaddition, J. Org. Lett. 9 (5) (2007) 883-886.

    21. [21]

      [21] S. Chandrasekhar, M. Seenaiah, A. Kumar, et al., Intramolecular copper(I)-catalyzed 1, 3-dipolar cycloaddition of azido-alkynes: synthesis of triazolo-benzoxazepine derivatives and their biological evaluation, Tetrahedron Lett. 52 (2011) 806-808.

    22. [22]

      [22] H. Ankati, E. Biehl, Microwave-assisted benzyne-click chemistry: preparation of 1H-benzo[d][1, 2,3]triazoles, Tetrahedron Lett. 50 (2009) 4677-4682.

    23. [23]

      [23] J.E. Hein, L.B. krasnova, M. Iwasaki, V.V. Fokin, Cu-catalyzed azide-alkyne cycloaddition: preparation of tris((1-benzyl-1H-1,2,3-triazolyl)methyl) amine, Org. Synth. 88 (2012) 238-241.

    24. [24]

      [24] H. Sharghi, R. Khalifeh, M.M. Doroodmand, Copper nanoparticles on charcoal for multicomponent catalytic synthesis of 1,2,3-triazole derivatives from benzyl halides or alkyl halides, terminal alkynes and sodium azide in water as a “green” solvent, Adv. Synth. Catal. 351 (2009) 207-218.

    25. [25]

      [25] J. Raushel, V.V. Fokin, Efficient synthesis of 1-sulfonyl-1,2,3-triazoles, Org. Lett. 12 (21) (2010) 4952-4955.

    26. [26]

      [26] I. Jlalia, C. Beauvineau, S. Beauvié re, et al., Automated synthesis of a 96 productsized library of triazole derivatives using a solid phase supported copper catalyst, Molecules 15 (2010) 3087-3120.

  • 加载中
    1. [1]

      Chong-Yang ShiJian-Xing GongZhen LiChao ShuLong-Wu YeQing SunBo ZhouXin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895

    2. [2]

      Yang LiuMinglu LiJianxun DingXuesi Chen . Glycoengineering-assistant biomineralization for tumor blockade therapy. Chinese Chemical Letters, 2025, 36(5): 110146-. doi: 10.1016/j.cclet.2024.110146

    3. [3]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    4. [4]

      Xiaochun LiuGaoyan ChenXiaodong YueChaoyue WangXue-Xin ZhangXuecheng RanYingxiao ZongJunke WangXicun Wang . A novel N-stable Co2P nano-catalyst for the synthesis of quinoxalines by annulation of alkynes and 1,2-diaminobenzenes. Chinese Chemical Letters, 2025, 36(8): 110707-. doi: 10.1016/j.cclet.2024.110707

    5. [5]

      Jialin HuangLiying FuZhanyong TangXiaoqiang MaXingda ZhaoDepeng Zhao . Cross-coupling of trifluoromethylarenes with alkynes C(sp)-H bonds and azoles C(sp2)-H bonds via photoredox/copper dual catalysis. Chinese Chemical Letters, 2025, 36(7): 110505-. doi: 10.1016/j.cclet.2024.110505

    6. [6]

      Haijiao LiMingzu ZhangJinlin HeJian LiuXingwei SunPeihong Ni . Synthesis of curcumin polyprodrug via click chemistry and construction of dual-drug-loaded nano platform for highly efficient tumor treatment. Chinese Chemical Letters, 2025, 36(8): 110615-. doi: 10.1016/j.cclet.2024.110615

    7. [7]

      Li-Ying WangJun-Jie YuShuai WangYang LiuKe-Xian SongJi-Pan YuLi-Yong YuanZhi-Rong LiuWei-Qun Shi . Pyridine-based ionic sp2 carbon-conjugated covalent organic frameworks for selective extraction of Pu(Ⅳ) from high-level liquid waste. Chinese Chemical Letters, 2025, 36(8): 110706-. doi: 10.1016/j.cclet.2024.110706

    8. [8]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    9. [9]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    10. [10]

      Li LiZhi-Xin YanChuan-Kun RanYi LiuShuo ZhangTian-Yu GaoLong-Fei DaiLi-Li LiaoJian-Heng YeDa-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104

    11. [11]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    12. [12]

      Yuhao ZhouSiyuan WuXiaozhe RenHongjin LiShu LiTianying Yan . Effects of salt fraction on the Na+ transport in salt-in-ionic liquid electrolytes. Chinese Chemical Letters, 2025, 36(6): 110048-. doi: 10.1016/j.cclet.2024.110048

    13. [13]

      Mengyu ChenQinglin ZhouTianyun QinNingyao SunYuxi ChenYuwei GongXingyi LiJinsong Liu . An ionic liquid-reinforced gelatin hydrogel with strong adhesion, antibacterial and anti-inflammatory properties for treating oral ulcers. Chinese Chemical Letters, 2025, 36(7): 110441-. doi: 10.1016/j.cclet.2024.110441

    14. [14]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    15. [15]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    16. [16]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    17. [17]

      Bowen XuJiahao ChenLulu CuiXinyue LiYuan XueSheng Han . Terpolymers of alkyl methacrylate-trans anethole-1,2,3,6-tetrahydrophthalic anhydride copolymers: A low dosage and high-efficiency cold flow improver for diesel fuel. Chinese Chemical Letters, 2025, 36(5): 110196-. doi: 10.1016/j.cclet.2024.110196

    18. [18]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    19. [19]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    20. [20]

      Hefei YangLe-Cheng WangXiao-Feng Wu . Sustainable carbonylative transformation of alkyl iodides to amides via crosslinking of EDA and XAT. Chinese Chemical Letters, 2025, 36(9): 110843-. doi: 10.1016/j.cclet.2025.110843

Metrics
  • PDF Downloads(0)
  • Abstract views(1054)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return