Citation: Long-Jiao Chang, Shao-Hua Luo, Hai-Liang Zhang, Xi-Wei Qi, Zhi-Yuan Wang, Yan-Guo Liu, Yu-Chun Zhai. Synthesis and performance of Li4Ti5O12 anode materials using the PVP-assisted combustion method[J]. Chinese Chemical Letters, ;2014, 25(12): 1569-1572. doi: 10.1016/j.cclet.2014.09.002 shu

Synthesis and performance of Li4Ti5O12 anode materials using the PVP-assisted combustion method

  • Corresponding author: Shao-Hua Luo, 
  • Received Date: 11 July 2014
    Available Online: 29 August 2014

    Fund Project: This work was supported by the National Natural Science Foundation of China (No. 51374056) (No. 51374056) Natural Science Foundation of Hebei Province (No. E2013501135) (Ⅱ) program for New Century Excellent Talents in University (No. NCET-10-0304) (No. E2013501135) The Special Fund for Basic Scientific Research of Central Colleges, Northeastern University (Nos. N100123003 and N120523001). (No. NCET-10-0304)

  • Li4Ti5O12 was synthesized by a facile gel-combustion method (GCM) with polyvinylpyrrolidone (PVP) as the polymer chelating agent and fuel. The structural and electrochemical properties of the sample were compared with the one prepared by the conventional solid-state reaction (SSR) through X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), charge-discharge measurements, and electrochemical impedance spectroscopy (EIS), respectively. The sub-microscale Li4Ti5O12 oxides, with a high phase purity and good stoichiometry, can be obtained by annealing at 800 ℃. The grain size is smaller than that of the samples that were power prepared by SSR. Lithium-ion batteries with a GCM Li4Ti5O12 anode exhibit excellent reversible capacities of 167.6, 160.7, 152.9, and 144.2 mAh/g, at the current densities of 0.5 C, 1 C, 3 C and 5 C, respectively. The excellent cycling and rate performance can be attributed to the smaller particle size, lower charge-transfer resistance and larger lithium ion diffusion coefficient. It is therefore concluded that GCM Li4Ti5O12 is a promising candidate for applications in highrate lithium ion batteries.
  • 加载中
    1. [1]

      [1] M.L. Lee, Y.H. Li, S.C. Liao, et al., Li4Ti5O12-coated graphite anode materials for lithium-ion batteries, Electrochim. Acta 112 (2013) 529-534.

    2. [2]

      [2] P.G. Bruce, Energy storage beyond the horizon: rechargeable lithium batteries, Solid State Ionics 179 (2008) 752-760.

    3. [3]

      [3] T.F. Yi, L.J. Jiang, J. Shu, et al., Recent development and application of Li4Ti5O12 as anode material of lithium ion battery, J. Phys. Chem. Solids 71 (2010) 1236-1242.

    4. [4]

      [4] J. Morales, R. Trocoli, S. Franger, J. Santos-Peñ a, Cycling-induced stress in lithium ion negative electrodes: LiAl/LiFePO4 and Li4Ti5O12/LiFePO4 cells, Electrochim. Acta 55 (2010) 3075-3082.

    5. [5]

      [5] M.Q. Snyder, S.A. Trebukhova, B. Ravdel, et al., Synthesis and characterization of atomic layer deposited titanium nitride thin films on lithium titanate spinel powder as a lithium-ion battery anode, J. Power Sources 165 (2007) 379-385.

    6. [6]

      [6] Z.P. Tang, X.X. Tan, G.Y. Hou, G.Q. Zheng, Nanocrystalline Li4Ti5O12-coated TiO2 nanotube arrays as three-dimensional anode for lithium-ion batteries, Electrochim. Acta 117 (2014) 172-178.

    7. [7]

      [7] L.W. Liang, K. Du, Z.D. Peng, Y.B. Cao, G.R. Hu, Synthesis and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 as a concentration-gradient cathode material for lithium batteries, Chin. Chem. Lett. 25 (2014) 883-886.

    8. [8]

      [8] M.X. Ma, Mesoporous cobalt oxide for largely improved lithium storage, Chin. Chem. Lett. 23 (2012) 949-952.

    9. [9]

      [9] H. Zhao, D. Wang, Y. Lin, et al., Enhancing the high-rate performance of Li4Ti5O12 anode material for lithium-ion battery by a wet ball milling assisted solid-state reaction and ultra-high speed nano-pulverization, J. Power Sources 266 (2014) 60-65.

    10. [10]

      [10] W. Fang, X.Q. Chen, P.J. Zuo, et al., Hydrothermal-assisted sol-gel synthesis of Li4Ti5O12/C nano-composite for high-energy lithium-ion batteries, Solid State Ionics 244 (2013) 52-56.

    11. [11]

      [11] W.L. Zhang, J.F. Li, Y.B. Guan, et al., Nano-Li4Ti5O12 with high rate performance synthesized by a glycerol assisted hydrothermal method, J. Power Sources 243 (2013) 661-667.

    12. [12]

      [12] C.M. Zhang, Y.Y. Zhang, J. Wang, et al., Li4Ti5O12 prepared by a modified citric acid sol-gel method for lithium-ion battery, J. Power Sources 236 (2013) 118-125.

    13. [13]

      [13] J. Mosa, J.F. Vé lez, J.J. Reinosa, et al., Li4Ti5O12 thin-film electrodes by sol-gel for lithium-ion microbatteries, J. Power Sources 244 (2013) 482-487.

    14. [14]

      [14] X. Li, H.C. Lin, W.J. Cui, Q. Xiao, J.B. Zhao, Fast solution-combustion synthesis of nitrogen-modified Li4Ti5O12 nanomaterials with improved electrochemical performance, ACS Appl. Mater. Interfaces 6 (2014) 7895-7901.

    15. [15]

      [15] S.H. Luo, Z.L. Tang, W.H. Yao, Z.T. Zhang, Low-temperature combustion synthesis and characterization of nanosized tetragonal barium titanate powders, Microelectron. Eng. 66 (2003) 147-152.

    16. [16]

      [16] A.Y. Shenouda, H.K. Liu, Electrochemical behaviour of tin borophosphate negative electrodes for energy storage systems, J. Power Sources 185 (2008) 1386-1391.

    17. [17]

      [17] L.J. Chen, J.D. Liao, Y.J. Chuang, et al., Synthesis and characterization of PVP/LiCoO2 nanofibers by electrospinning route, J. Appl. Polym. Sci. 121 (2011) 154-160.

    18. [18]

      [18] I. Stepniak, Compatibility of poly (bisAEA4)-LiTFSI-MPPipTFSI ionic liquid gel polymer electrolyte with Li4Ti5O12 lithium ion battery anode, J. Power Sources 247 (2014) 112-116.

  • 加载中
    1. [1]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    2. [2]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    3. [3]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    4. [4]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    5. [5]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    6. [6]

      Dong SuiJiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417

    7. [7]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    8. [8]

      Jia-hui Li Jinkai Qiu Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381

    9. [9]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    10. [10]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    11. [11]

      Chang LiuZirui SongXinglan DengShihong XuRenji ZhengWentao DengHongshuai HouGuoqiang ZouXiaobo Ji . Interfacial/bulk synergetic effects accelerating charge transferring for advanced lithium-ion capacitors. Chinese Chemical Letters, 2024, 35(6): 109081-. doi: 10.1016/j.cclet.2023.109081

    12. [12]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    13. [13]

      Guihuang FangYing LiuYangyang FengYing PanHongwei YangYongchuan LiuMaoxiang Wu . Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 110385-. doi: 10.1016/j.cclet.2024.110385

    14. [14]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    15. [15]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    16. [16]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    17. [17]

      Mei-Chen LiuQing-Song LiuYi-Zhou QuanJia-Ling YuGang WuXiu-Li WangYu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123

    18. [18]

      Ya SongMingxia ZhouZhu ChenHuali NieJiao-Jing ShaoGuangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200

    19. [19]

      Yun WeiLei ZhouWenbin HuLiming YangGuang YangChaoqiang WangHui ShiFei HanYufa FengXuan DingPenghui ShaoXubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172

    20. [20]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

Metrics
  • PDF Downloads(0)
  • Abstract views(595)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return