Citation: Cai-Hong Wang, Cai-Sheng Wu, Hai-Lin Qin, Jin-Lan Zhang. Rapid discovery and identification of 68 compounds in the active fraction from Xiao-Xu-Ming decoction (XXMD) by HPLC-HRMS and MTSF technique[J]. Chinese Chemical Letters, ;2014, 25(12): 1648-1652. doi: 10.1016/j.cclet.2014.09.001 shu

Rapid discovery and identification of 68 compounds in the active fraction from Xiao-Xu-Ming decoction (XXMD) by HPLC-HRMS and MTSF technique

  • Corresponding author: Jin-Lan Zhang, 
  • Received Date: 30 May 2014
    Available Online: 25 August 2014

    Fund Project: The authors would like to thank the Natural Science Foundation of Beijing (No. 7133252) for financial support of this work. (No. 7133252)

  • Xiao-Xu-Ming decoction (XXMD) was a traditional Chinese prescription and first recorded in “Bei Ji Qian Jin Yao Fang”. It has been widely used to treat theoplegia and the sequel of theoplegia in China. In the present work, high-performance liquid chromatography coupled with high resolution mass spectrometry (HPLC-HRMS) combined with the mass spectral tree similarity filter technique (MTSF) was used to rapidly discover and identify the compounds of the active fraction of XXMD. A total of 3362 compounds were automatically detected by HPLC-HRMS, and final 68 compounds were identified in the active fraction of XXMD, including 14 templated compounds (reference compounds), 50 related compounds fished by MTSF technique, and 4 unrelated compounds identified by manual method. This study successfully applied MTSF technology for the first time to discover and identify the components of Chinese prescription. The results demonstrated that MTSF technique should be useful to the discovery and identification of compounds in Chinese prescription. This study also proved that MTSF can be applied to the targeted phytochemical separation.
  • 加载中
    1. [1]

      [1] H. Wang, G. Yan, A. Zhang, et al., Rapid discovery and global characterization of chemical constituents and rats metabolites of Phellodendri amurensis cortex by ultra-performance liquid chromatography-electrospray ionization/quadrupoletime-of-flight mass spectrometry coupled with pattern recognition approach, Analyst 138 (2013) 3303-3312.

    2. [2]

      [2] Y. Liang, H. Hao, A. Kang, et al., Qualitative and quantitative determination of complicated herbal components by liquid chromatography hybrid ion trap time-of-flight mass spectrometry and a relative exposure approach to herbal pharmacokinetics independent of standards, J. Chromatogr. A 1217 (2010) 4971-4979.

    3. [3]

      [3] Y. Dai, F.J. Tu, Z.H. Yao, et al., Rapid identification of chemical constituents in traditional Chinese medicine Fufang preparation Xianling Gubao capsule by LClinear ion trap/orbitrap mass spectrometry, Am. J. Chin. Med. 41 (2013) 1181-1198.

    4. [4]

      [4] Y. Rao, M. McCooeye, Z. Mester, Mapping of sulfur metabolic pathway by LC orbitrap mass spectrometry, Anal. Chim. Acta 721 (2012) 129-136.

    5. [5]

      [5] M. Paul, J. Ippisch, C. Herrmann, et al., Analysis of new designer drugs and common drugs of abuse in urine by a combined targeted and untargeted LC-HR-QTOFMS approach, Anal. Bioanal. Chem. 406 (2014) 4425-4441.

    6. [6]

      [6] X.C. Zhu, Y.P. Chen, R. Subramanian, Comparison of information dependent acquisition, SWATH, and MSAll techniques in metabolite identification study employing UHPLC-Q-TOF mass spectrometry, Anal. Chem. 86 (2014) 1202-1209.

    7. [7]

      [7] M. Rojas-Cherto, J.E. Peironcely, P.T. Kasper, et al., Metabolite identification using automated comparison of high-resolution multistage mass spectral trees, Anal. Chem. 84 (2012) 5524-5534.

    8. [8]

      [8] J.E. Peironcely, M. Rojas Chertó, A. Tas, et al., Automated pipeline for de novo metabolite identification using mass-spectrometry-based metabolomics, Anal. Chem. 85 (2013) 3576-3583.

    9. [9]

      [9] P.T. Kasper, M. Rojas-Chertó, R. Mistrik, et al., Fragmentation trees for the structural characterisation of metabolites, Rapid Commun. Mass Spectrom. 26 (2012) 2275-2286.

    10. [10]

      [10] M.T. Sheldon, R. Mistrik, T.R. Croley, Determination of ion structures in structurally related compounds using precursor ion fingerprinting, J. Am. Soc. Mass Spectrom. 20 (2009) 370-376.

    11. [11]

      [11] Y. Jin, C.S. Wu, J.L. Zhang, Y.F. Li, A new strategy for the discovery of epimedium metabolites using high-performance liquid chromatography with high resolution mass spectrometry, Anal. Chim. Acta 768 (2013) 111-117.

    12. [12]

      [12] Y. Wang, H. Qin, X. He, G. Du, Activity evaluation of components and preparation of effective components group of Xiaoxuming decoction for anti-cerebral ischemic, China J. Chin. Mater. Med. 36 (2011) 2140-2144.

    13. [13]

      [13] Y. Wang, C. Ding, K. Du, et al., Identification of active compounds and their metabolites by high-performance liquid chromatography/electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry from Xiao-Xu-Ming decoction (XXMD), Rapid Commun. Mass Spectrom. 23 (2009) 2724-2732.

    14. [14]

      [14] P. Sander, Substance identification of ion trap MS/MS spectra in a MS/MS library, in: Proceedings of 47th ASMS Conference on Mass Spectrometry and Allied Topics, Dallas, TX, 1999.

    15. [15]

      [15] Q. Lv, L.Z. Yi, H.Y. Yi, et al., Chromatographic fingerprint of Semen Armeniacae Amarae based on high-performance liquid chromatogram and chemometric methods, Anal. Methods 1 (2012) 299-308.

  • 加载中
    1. [1]

      Zhefei HuJingwen LiaoJiawen ZhouLulu ZhaoYanjuan LiuYuefei ZhangWei ChenSheng Tang . A new green approach to synthesizing MIP-202@porous silica microspheres for positional isomer/enantiomer/hydrophilic separation. Chinese Chemical Letters, 2025, 36(1): 109985-. doi: 10.1016/j.cclet.2024.109985

    2. [2]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    3. [3]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    4. [4]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    5. [5]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    6. [6]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    7. [7]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    8. [8]

      Yanhua ChenXian DingJun ZhouZhaoying WangYunhai BoYing HuQingce ZangJing XuRuiping ZhangJiuming HeFen YangZeper Abliz . Plasma metabolomics combined with mass spectrometry imaging reveals crosstalk between tumor and plasma in gastric cancer genesis and metastasis. Chinese Chemical Letters, 2025, 36(1): 110351-. doi: 10.1016/j.cclet.2024.110351

    9. [9]

      Haiyan LuJiayue YeYiping WeiHua ZhangKonstantin ChinginVladimir FrankevichHuanwen Chen . Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chinese Chemical Letters, 2025, 36(2): 110077-. doi: 10.1016/j.cclet.2024.110077

    10. [10]

      Keqiang ShiXiujuan HongDongyan XuTao PanHuiwen WangHongru FengCheng GuoYuanjiang Pan . Analysis of RNA modifications in peripheral white blood cells from breast cancer patients by mass spectrometry. Chinese Chemical Letters, 2025, 36(3): 110079-. doi: 10.1016/j.cclet.2024.110079

    11. [11]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    12. [12]

      Zhe WangLi-Peng HouQian-Kui ZhangNan YaoAibing ChenJia-Qi HuangXue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570

    13. [13]

      Xinyu Huai Jingxuan Liu Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158

    14. [14]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    15. [15]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    16. [16]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    17. [17]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    18. [18]

      Guiyang ZhengXuelian KangHaoran YeWei FanChristian SonneSu Shiung LamRock Keey LiewChanglei XiaYang ShiShengbo Ge . Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review. Chinese Chemical Letters, 2024, 35(4): 108817-. doi: 10.1016/j.cclet.2023.108817

    19. [19]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    20. [20]

      Ningning ZhaoYuyan LiangWenjie HuoXinyan ZhuZhangxing HeZekun ZhangYoutuo ZhangXianwen WuLei DaiJing ZhuLing WangQiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332

Metrics
  • PDF Downloads(0)
  • Abstract views(821)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return