Citation: Yue-Xia Zhang, Zhen-Hua Yang, Quan-Xi Zhang, Rui-Jin Li, Hong Geng, Chuan Dong. Chemical compositions and effects on chemiluminescence of AMs in vitro of chalk dusts[J]. Chinese Chemical Letters, ;2015, 26(1): 157-159. doi: 10.1016/j.cclet.2014.08.004 shu

Chemical compositions and effects on chemiluminescence of AMs in vitro of chalk dusts

  • Corresponding author: Hong Geng,  Chuan Dong, 
  • Received Date: 5 May 2014
    Available Online: 25 August 2014

    Fund Project:

  • The aim of this study was to investigate the chemical compositions of chalk dust and examine the adverse effects of fine chalk particle matters (PM2.5) on rat alveolar macrophages (AMs) in vitro. Morphologies and element concentrations of chalk particles were analyzed using quantitative energydispersive electron probe X-ray microanalysis (ED-EPMA). The oxidative response of AMs exposed to chalk PM2.5 was measured by luminol-dependent chemiluminescence (CL). The results showed that (1) Chalk dust was mainly composed of gypsum (CaSO4), calcite (CaCO3)/dolomite (CaMg(CO3)2), and organic adhesives; (2) Fine chalk particles induced the AM production of CL, which was inhibited by about 90% by diphenyleneiodonium chloride (DPI). Based on these results, we showed that cytotoxicity of chalk PM2.5 may be related to the reactive oxygen species (ROS) generation.
  • 加载中
    1. [1]

      [1] P.C. Zeidler, A. Hubbs, L. Battelli, V. Castranova, Role of inducible nitric oxide synthase-derived nitric oxide in silica-induced pulmonary inflammation and fibrosis, J. Toxicol. Environ. Health A 67 (2004) 1001-1026.

    2. [2]

      [2] R.J. Li, X.J. Kou, H. Geng, C. Dong, Z.W. Cai, Pollution characteristics of ambient PM2.5-bound PAHs and NPAHs in a typical winter time period in Taiyuan, Chin. Chem. Lett. 25 (2014) 663-666.

    3. [3]

      [3] E. Bastonini, L. Verdone, S. Morrone, et al., Transcriptional modulation of a human monocytic cell line exposed to PM10 from an urban area, Environ. Res. 111 (2011) 765-774.

    4. [4]

      [4] D. Majumdar, S.P.M. Prince William, Chalk dust fall during classroom teaching: particle size distribution and morphological characteristics, Environ. Monit. Assess. 148 (2009) 343-351.

    5. [5]

      [5] S. Weichenthal, A. Dufresne, C. Infante-Rivard, L. Joseph, Characterizing and predicting ultrafine particle counts in Canadian classrooms during the winter months: model development and evaluation, Environ. Res. 106 (2008) 349-360.

    6. [6]

      [6] H. Geng, J.Y. Ryu, S. Maskey, H.J. Jung, C.U. Ro, Characterisation of individual aerosol particles collected during a haze episode in Incheon, Korea using the quantitative ED-EPMA technique, Atmos. Chem. Phys. 11 (2011) 1327-1337.

    7. [7]

      [7] Q.N. Myrvik, E.S. Leake, B. Fariss, Lysozyme content of alveolar and peritoneal macrophages from the rabbit, J. Immunol. 86 (1961) 133-136.

    8. [8]

      [8] H. Geng, Z.Q. Meng, Inhibition of superoxide dismutase, vitamin C and glutathione on chemiluminescence produced by luminol and the mixture of sulfite and bisulfate, Spectrochim. Acta A 64 (2006) 87-92.

    9. [9]

      [9] T.T. Chen, Y.H. Hu, Y. Cen, X. Chu, Y. Lu, A dual-emission fluorescent nanocomplex of gold-cluster-decorated silica particles for live cell imaging of highly reactive oxygen species, J. Am. Chem. Soc. 135 (2013) 11595-11602.

    10. [10]

      [10] C.U. Ro, J. Osá n, I. Szalóki, et al., A Monte Carlo program for quantitative electron-induced X-ray analysis of individual particles, Anal. Chem. 75 (2003) 851-859.

    11. [11]

      [11] A. Clouter, C.E. Houghton, L.R. Hibbs, et al., Effect of inhalation of low doses of crocidolite and fibrous gypsum on the glutathione concentration and g-glutamyl transpeptidase activity in macrophages and bronchoalveolar lavage fluid, Inhal. Toxicol. 10 (1998) 3-14.

    12. [12]

      [12] E.F.M. Wouters, T.H.J.M. Jorna, M. Westenend, Respiratory effects of coal dust exposure: clinical effects and diagnosis, Exp. Lung Res. 20 (1994) 385-394.

    13. [13]

      [13] F. Crummy, I. Carl, C.H.S. Cameron, et al., A possible case of pneumoconiosis in a limestone quarry worker, Occup. Med. 54 (2004) 497-499.

    14. [14]

      [14] N.A. Paterson, D.J. McIver, S. Schurch, The effect of leukotrienes on porcine alveolar macrophage function, Prostaglandins Leukot. Med. 25 (1986) 147-161.

    15. [15]

      [15] Z. Zhang, H.M. Shen, Q.F. Zhang, C.N. Ong, Involvement of oxidative stress in crystalline silica induced cytotoxicity and genotoxicity in rat alveolar macrophages, Environ. Res. 82 (2000) 245-252.

    16. [16]

      [16] A.M. Scherbart, J. Langer, A. Bushmelev, et al., Contrasting macrophage activation by fine and ultrafine titanium dioxide particles is associated with different uptake mechanisms, Part. Fibre Toxicol. 8 (2011) 31-49.

    17. [17]

      [17] B. Halliwell, J.M.C. Gutteridge, Free Radicals in Biology and Medicine, Claredon Press, Oxford, 1989.

    18. [18]

      [18] D. Breznan, P. Goegan, V. Chauhan, et al., Respiratory burst in alveolar macrophages exposed to urban particles is not a predictor of cytotoxicity, Toxicol. In Vitro 27 (2013) 1287-1297.

    19. [19]

      [19] Y. Li, M.A. Trush, Diphenyleneiodonium, an NAD(P)H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production, Biochem. Biophys. Res. Commun. 253 (1998) 295-299.

  • 加载中
    1. [1]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

    2. [2]

      Shuaige BaiShuai HuangTing LuoBin FengYanpeng FangFeiyi ChuJie DongWenbin Zeng . Debut of a responsive chemiluminescent probe for butyrylcholinesterase: Application in biological imaging and pesticide residue detection. Chinese Chemical Letters, 2025, 36(3): 110054-. doi: 10.1016/j.cclet.2024.110054

    3. [3]

      Kun-Heng LiHong-Yang ZhaoDan-Dan WangMing-Hui QiZi-Jian XuJia-Mi LiZhi-Li ZhangShi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882

    4. [4]

      Feifei WangHang YaoXinyue WuYijian TangYang BaiHui ChongHuan Pang . Metal–organic framework and its composites modulate macrophage polarization in the treatment of inflammatory diseases. Chinese Chemical Letters, 2024, 35(5): 108821-. doi: 10.1016/j.cclet.2023.108821

    5. [5]

      Yihao ZhangYang JiaoXianchao JiaQiaojia GuoChunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748

    6. [6]

      Jiaqi HuangRenjiang KongYanmei LiNi YanYeyang WuZiwen QiuZhenming LuXiaona RaoShiying LiHong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254

    7. [7]

      Haijing CuiWeihao ZhuChuning YueMing YangWenzhi RenAiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727

    8. [8]

      Qinyu ZhaoYunchao ZhaoSongjing ZhongZhaoyang YueZhuoheng JiangShaobo WangQuanhong HuShuncheng YaoKaikai WenLinlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644

    9. [9]

      Xiangdong LaiTengfei LiuZengchao GuoYihan WangJiang XiaoQingxiu XiaXiaohui LiuHui JiangXuemei WangIn situ formed fluorescent gold nanoclusters inhibit hair follicle regeneration in oxidative stress microenvironment via suppressing NFκB signal pathway. Chinese Chemical Letters, 2025, 36(2): 109762-. doi: 10.1016/j.cclet.2024.109762

    10. [10]

      Zekun GaoXiuli ZhengWeimin LiuJie ShaShuaishuai BianHaohui RenJiasheng WuWenjun ZhangChun-Sing LeePengfei Wang . GSH-activatable copper-elsinochrome off-on photosensitizer for combined specific NIR-Ⅱ two-photon photodynamic/chemodynamic therapy. Chinese Chemical Letters, 2025, 36(3): 109874-. doi: 10.1016/j.cclet.2024.109874

    11. [11]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

    12. [12]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    13. [13]

      Chi ZhangNing DingYuwei PanLichun FuYing Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579

    14. [14]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    15. [15]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    16. [16]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    17. [17]

      Jiahao LiuPeng LiuJunhong DuanQiongxuan XieJie FengHongpei TanZe MiYing LiYunjie LiaoPengfei RongWenhu ZhouXiang Gao . Macrophages-mediated tumor accumulation and deep penetration of bismuth/manganese biomineralized nanoparticles for enhanced radiotherapy. Chinese Chemical Letters, 2024, 35(12): 109632-. doi: 10.1016/j.cclet.2024.109632

    18. [18]

      Xiongbo SongJinwen XiaoJuan WuLi SunLong Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844

    19. [19]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    20. [20]

      Dan OuyangHuan HuangYanting HeJiajing ChenJiali LinZhuling ChenZongwei CaiZian Lin . Utilization of hydralazine as a reactive matrix for enhanced detection and on-MALDI-target derivatization of saccharides. Chinese Chemical Letters, 2024, 35(5): 108885-. doi: 10.1016/j.cclet.2023.108885

Metrics
  • PDF Downloads(0)
  • Abstract views(690)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return