Citation: Dao-Lin Wang, Jian-Ying Wu, Qing-Tao Cui. An efficient one-pot synthesis of thiophene-fused pyrido[3,2-a]azulenes via Gewald reaction[J]. Chinese Chemical Letters, ;2014, 25(12): 1591-1594. doi: 10.1016/j.cclet.2014.07.007 shu

An efficient one-pot synthesis of thiophene-fused pyrido[3,2-a]azulenes via Gewald reaction

  • Corresponding author: Dao-Lin Wang, 
  • Received Date: 19 May 2014
    Available Online: 1 July 2014

    Fund Project:

  • A simple and efficient procedure was developed for the synthesis of 11H(2H)-4-oxothiophene[3',4':6,5]pyrido[3,2-a]azulene-10-carboxylates (3) in moderate to good yields via the Gewald reaction of ethyl 1-cyanoacetyl-2-methoxyazulene-3-carboxylate (1) with carbonyl compounds (2) and elemental sulfur utilizing imidazole as catalyst. This reaction provides a new procedure for synthesis of pyridinone-fused azulenes.
  • 加载中
    1. [1]

      [1] P.M. Weintraub, J.S. Sabol, J.M. Kane, D.R. Borcherding, Recent advances in the synthesis of piperidones and piperidines, Tetrahedron 59 (2003) 2953-2989.

    2. [2]

      [2] D.D. Erol, N. Yulug, Synthesis and antimicrobial investigation of thiazolinoalkyl-4(H)-pyridiones, Eur. J. Med. Chem. 29 (1994) 893-897.

    3. [3]

      [3] L.J. Huang, M.C. Hsieh, C.M. Teng, K.H. Lee, S.C. Kuo, Synthesis and antiplatelet activity of phenyl quinolones, Bioorg. Med. Chem. 6 (1998) 1657-1662.

    4. [4]

      [4] C.T. Chen, M.H. Hsu, Y.Y. Cheng, et al., Synthesis and in vitro anticancer activity of 6,7-methylenedioxy (or 5-hydroxy-6-methoxy)-2-(substituted selenophenyl)-quinolin-4-one analogs, Eur. J. Med. Chem. 46 (2011) 6046-6056.

    5. [5]

      [5] T.S. Jagodzinski, Thioamides as useful synthons in the synthesis of heterocycles, Chem. Rev. 103 (2003) 197-228.

    6. [6]

      [6] M.S.Yen, I.J.Wang, Synthesis andabsorptionspectra ofhetarylazodyes derived from coupler 4-aryl-3-cyano-2-aminothiophenes, Dyes Pigments 61 (2004) 243-250.

    7. [7]

      [7] C. Wu, E.R. Decker, N. Blok, et al., Discovery, modeling, and human pharmacokinetics of N-(2-acetyl-4,6-dimethylphenyl)-3-(3,4-dimethyl isoxazol-5-ylsulfamoyl) thiophene-2-carboxamide (TBC3711), a second generation, ETA selective, and orally bioavailable endothelin antagonist, J. Med. Chem. 47 (2004) 1969-1986.

    8. [8]

      [8] K. Doré, S. Dubus, H.A. Ho, et al., Fluorescent polymeric transducer for the rapid, simple, and specific detection of nucleic acids at the zeptomole level, J. Am. Chem. Soc. 126 (2004) 4240-4244.

    9. [9]

      [9] (a) K. Gewald, Heterocyclen aus CH-aciden nitrilen, VII. 2-Amino-thiophene aus a-oxo-mercaptanen und methylenaktiven nitrilen, Chem. Ber. 98 (1965) 3571-3577; (b) K. Gewald, M. Gruner, U. Hain, G. Sü ptitz, Zur ringumwandlung von 2-aminothiophen-3-carbonsäureestern: pyridon-und pyridazinon-derivate, Monatsh. Chem. 119 (1988) 985-992; (c) X.G. Huang, J. Liu, J. Ren, et al., A facile and practical one-pot synthesis of multisubstituted 2-aminothiophenes via imidazole-catalyzed Gewald reaction, Tetrahedron 67 (2011) 6202-6205.

    10. [10]

      [10] T. Yanagisawa, S. Wakabayashi, T. Tomiyama, et al., Synthesis and anti-ulcer activities of sodium alkylazulene sulfonates, Chem. Pharm. Bull. 36 (1988) 641-647.

    11. [11]

      [11] (a) A.E. Asato, A. Peng, M.Z. Hossain, et al., Azulenic retinoids: novel nonbenzenoid aromatic retinoids with anticancer activity, J. Med. Chem. 36 (1993) 3137-3147; (b) B.C. Hong, Y.F. Jiang, E.S. Kumar, Microwave-assisted [6 + 4]-cycloaddition of fulvenes and α-pyrones to azulene-indoles: facile syntheses of novel antineoplastic agents, Bioorg. Med. Chem. Lett. 11 (2001) 1981-1984.

    12. [12]

      [12] D.A. Becker, J.J. Ley, L. Echegoyen, et al., Stilbazulenyl nitrone (STAZN): a nitronylsubstituted hydrocarbon with the potency of classical phenolic chain-breaking antioxidants, J. Am. Chem. Soc. 124 (2002) 4678-4684.

    13. [13]

      [13] (a) T. Morita, T. Nakadate, K. Takase, A facile method for the synthesis of azuleno[2,1-b]furan and azuleno[2,1-b]pyrrole derivatives and their some properties, Heterocycles 15 (1981) 835-838; (b) M. Nishiura, I. Ueda, K. Yamamura, Synthesis of 4-(azuleno[b]indolyl)-3-buten-2-ones by intramolecular tropylium ion-mediated furan ring-unravelled reaction, Heterocycles 74 (2007) 951-960; (c) S. Ito, T. Okujima, S. Kikuchi, et al., Synthesis and intramolecular pericyclization of 1-azulenyl thioketones, J. Org. Chem 73 (2008) 2256-2263; (d) D.L. Wang, S.F. Li, W. Li, et al., An efficient synthesis of 3-(guaiazulene-1-yl)succinimides by addition of guaiazulene to maleimides, Chin. Chem. Lett. 22 (2011) 789-792; (e) D.L. Wang, Z. Dong, J. Xu, D. Li, An efficient synthesis of 2-(guaiazulen-1-yl)furan derivatives via intramolecular Wittig reactions, Chin. Chem. Lett. 24 (2013) 622-624.

    14. [14]

      [14] G. Fischer, Chapter 3. Azulenes fused to heterocycles, Advances in Heterocyclic Chemistry, vol. 97, 2009, pp. 131-238.

    15. [15]

      [15] (a) D.L. Wang, Q.T. Cui, S.S. Feng, et al., A new synthesis approach to azuleno[2,1-b]pyridine-4(1H)-ones, Heterocyles 85 (2012) 697-704; (b) D.L. Wang, Z. Dong, Q.T. Cui, et al., Synthesis of some pyrazole-fused pyrido[3,2-a]azulenes, Heterocyles 87 (2013) 2343-2350.

    16. [16]

      [16] Physical and spectral (IR, NMR, Anal.) data: 3a:Mp 110-112 ℃. IR (KBr, cm-1): ν 3423 (NH), 1674 (C5O), 1658 (C5O). 1H NMR (400 MHz, CDCl3): δ 1.58 (t, 3H, J = 7.2 Hz), 2.36 (s, 3H), 4.55 (q, 2H, J = 7.2 Hz), 7.54 (s, 1H), 7.80-7.87 (m, 3H), 9.46 (d, 1H, J = 10.4 Hz), 10.22 (d, 1H, J = 10.0 Hz), 11.32 (s, 1H). 13C NMR (100 MHz, CDCl3): δ 16.1, 27.2, 60.4, 101.3, 112.3, 117.5, 127.8, 131.9, 133.7, 135.2, 135.8, 137.3, 137.6, 142.3, 144.4, 145.5, 150.7, 165.2, 172.5. Anal. Calcd. for C19H15NO3S: C 67.64, H 4.48, N 4.15, S 9.50; Found: C 67.79, H 4.64, N 4.27, S 9.61. 3b: Mp 96-98 ℃. IR (KBr, cm-1): ν 3414 (NH), 1684 (C5O), 1653 (C5O). 1H NMR (400 MHz, CDCl3): δ 1.37 (t, 6H, J = 7.2 Hz), 1.55 (t, 3H, J = 7.2 Hz), 2.88 (q, 2H, J = 7.2 Hz), 4.56 (q, 2H, J = 7.2 Hz), 7.51 (s, 1H), 7.81-7.90 (m, 3H), 9.43 (d, 1H, J = 10.4 Hz), 10.20 (d, 1H, J = 10.0 Hz), 11.36 (s, 1H). 13C NMR (100 MHz, CDCl3): δ 14.6, 15.2, 25.6, 60.7, 100.2, 112.1, 118.6, 127.7, 132.6, 133.4, 135.7, 135.9, 137.3, 137.9, 142.0, 144.4, 145.7, 150.5, 165.5, 172.8. Anal. Calcd. for C20H17NO3S: C 68.36, H 4.88, N 3.99, S 9.12; Found: C 68.45, H 4.95, N 4.16, S 9.24. 3c: Mp 165-167 ℃. IR (KBr, cm-1): ν 3424 (NH), 1682 (C5O), 1658 (C5O). 1H NMR(400 MHz, CDCl3): δ 1.01 (t, 3H, J = 3.6 Hz), 1.53 (t, 3H, J = 7.2 Hz), 1.72-1.77 (m, 2H), 2.80-2.83 (m, 2H), 4.55 (q, 2H, J = 7.2 Hz), 7.41 (s, 1H), 7.78-7.81 (m, 1H), 7.85-7.88 (m, 2H), 9.41 (d, 1H, J = 10.0 Hz), 10.20 (d, 1H, J = 9.2 Hz), 11.53 (s, 1H). 13C NMR (100 MHz, CDCl3): δ 13.6, 14.7, 24.2, 32.3, 60.6, 100.1, 112.2, 119.3, 127.8, 132.2, 133.3, 135.6, 136.1, 136.8, 137.1, 142.1, 144.2, 146.6, 150.6, 166.4, 173.5. Anal. Calcd. for C21H19NO3S: C 69.02, H 5.24, N 3.83, S 8.77; Found: C 69.19, H 5.34, N 3.95, S 8.89. 3d:Mp 174-176 ℃. IR (KBr, cm-1): ν 3435 (NH), 1689 (C5O), 1643 (C5O). 1H NMR (400 MHz, CDCl3): δ 1.38 (d, 6H, J = 6.8 Hz), 1.54 (t, 3H, J = 6.8 Hz), 3.17-3.20 (m, 1H), 4.56 (q, 2H, J = 6.8 Hz), 7.46 (s, 1H), 7.80-7.87 (m, 3H), 9.42 (d, 1H, J = 10.0 Hz), 10.21 (d, 1H, J = 10.0 Hz), 11.57 (s, 1H). 13C NMR (100 MHz, CDCl3): δ 14.7, 34.4, 36.1, 60.6, 100.1, 112.3, 117.1, 127.8, 132.4, 133.3, 135.6, 135.8, 137.2, 142.8, 143.6, 144.2, 145.4, 150.6, 166.2, 173.3. Anal. Calcd. for C21H19NO3S: C 69.02, H 5.24, N 3.83, S 8.77; Found: C 69.13, H 5.36, N 3.98, S 8.84. 3e:Mp 138-139 ℃. IR (KBr, cm-1): ν 3483 (NH), 1692 (C5O), 1664 (C5O). 1H NMR (400 MHz, CDCl3): δ 0.94 (t, 3H, J = 3.6 Hz), 1.40-1.45 (m, 2H), 1.55 (t, 3H, J = 7.2 Hz), 1.67-1.73 (m, 2H), 2.83-2.87 (m, 2H), 4.56 (q, 2H, J = 7.2 Hz), 7.47 (s, 1H), 7.81-7.89 (m, 3H), 9.43 (d, 1H, J = 10.0 Hz), 10.22 (d, 1H, J = 10.4 Hz), 11.51 (s, 1H). 13CNMR(100 MHz, CDCl3): δ 13.8, 14.7, 22.0, 29.9, 32.2, 60.7, 100.1, 112.2, 119.2, 127.7, 132.5, 133.4, 135.5, 136.5, 136.9, 137.3, 142.1, 144.3, 146.7, 150.6, 166.4, 172.8. Anal. Calcd. for C22H21NO3S: C 69.63, H 5.58, N 3.69, S 8.45; Found: C 69.78, H 5.76, N 3.83, S 8.56. 3f:Mp 127-129 ℃. IR (KBr, cm-1): ν 3433 (NH), 1687 (C5O), 1659 (C5O). 1H NMR (400 MHz, CDCl3): δ 0.89 (t, 3H, J = 3.6 Hz), 1.36-1.38 (m, 4H), 1.53 (t, 3H, J = 6.8 Hz), 1.72-1.73 (m, 2H), 2.81-2.83 (m, 2H), 4.54 (q, 2H, J = 6.8 Hz), 7.39 (s, 1H), 7.80-7.87 (m, 3H), 9.40 (d, 1H, J = 10.0 Hz), 10.20 (d, 1H, J = 10.4 Hz), 11.54 (s, 1H). 13C NMR (100 MHz, CDCl3): δ 14.0, 14.6, 22.4, 30.2, 30.8, 31.2, 60.7, 100.1, 112.2, 120.2, 127.8, 132.3, 133.2, 135.6, 136.4, 136.7, 137.1, 142.0, 144.1, 146.6, 150.5, 166.6, 173.3. Anal. Calcd. for C23H23NO3S: C 70.20, H 5.89, N 3.56, S, 8.15; Found: C 70.34, H 5.95, N 3.70, S, 8.29. 3g:Mp 125-127 ℃. IR (KBr, cm-1): ν 3493 (NH), 1695 (C5O), 1643 (C5O). 1H NMR (400 MHz, CDCl3): δ 0.88 (t, 3H, J = 3.6 Hz), 1.30-1.39 (m, 6H), 1.53 (t, 3H, J = 6.8 Hz), 1.69-1.73 (m, 2H), 2.81-2.85 (m, 2H), 4.55 (q, 2H, J = 6.8 Hz), 7.39 (s, 1H), 7.77-7.85 (m, 3H), 9.40 (d, 1H, J = 10.0 Hz), 10.19 (d, 1H, J = 10.4 Hz), 11.25 (s, 1H). 13CNMR(100 MHz, CDCl3): δ 9.2, 9.8, 16.7, 23.8, 25.4, 26.2, 26.6, 55.7, 96.2, 107.7, 114.3, 122.9, 127.4, 128.4, 130.6, 131.5, 131.8, 132.2, 137.0, 139.2, 141.7, 146.5, 161.2, 168.1. Anal. Calcd. for C24H25NO3S: C 70.73, H 6.18, N 3.44, S 7.87; Found: C 70.86, H 6.34, N 3.62, S 7.96. 3h:Mp 118-119 ℃. IR (KBr, cm-1): ν 3453 (NH), 1689 (C5O), 1644 (C5O). 1H NMR (400 MHz, CDCl3): δ 0.86 (t, 3H, J = 3.6 Hz), 1.22-1.37 (m, 8H), 1.53 (t, 3H, J = 6.8 Hz), 1.69-1.71 (m, 2H), 2.81-2.86 (m, 2H), 4.55 (q, 2H, J = 6.8 Hz), 7.38 (s, 1H), 7.80-7.86 (m, 3H), 9.39-9.44 (m, 1H), 10.19 (d, 1H, J = 10.4 Hz), 11.23 (s, 1H). 13C NMR (100 MHz, CDCl3): δ 9.2, 9.8, 17.7, 24.0, 25.3, 26.3, 26.8, 55.3, 96.1, 107.3, 114.3, 123.0, 127.4, 128.4, 130.7, 131.4, 131.8, 132.2, 137.2, 139.3, 141.7, 146.7, 161.4, 168.5. Anal. Calcd. for C25H27NO3S: C 71.23, H 6.46, N 3.32, S 7.61; Found: C 71.37, H 6.63, N 3.47, S 7.76. 3i:Mp 116-117 ℃. IR (KBr, cm-1): ν 3423 (NH), 1688 (C5O), 1653 (C5O). 1H NMR (400 MHz, CDCl3): δ 0.87 (t, 3H, J = 3.6 Hz), 1.26-1.37 (m, 10H), 1.55 (3 t, H, J = 6.8 Hz), 1.69-1.70 (m, 2H), 2.82-2.84 (m, 2H), 4.55 (q, 2H, J = 6.8 Hz), 7.41 (s, 1H), 7.79-7.86 (m, 3H), 9.48-9.52 (m, 1H), 10.20 (d, 1H, J = 10.4 Hz), 11.26 (s, 1H). 13C NMR (100 MHz, CDCl3): δ 9.2, 9.8, 17.8, 24.1, 24.4, 26.4, 26.8, 26.9, 55.7, 96.2, 107.2, 114.2, 122.8, 127.4, 129.4, 130.8, 131.5, 131.8, 132.2, 137.1, 139.2, 141.7, 146.5, 161.6, 168.4. Anal. Calcd. for C26H29NO3S: C 71.69, H 6.71, N 3.22, S 7.36; Found: C 71.83, H 6.89, N 3.35, S 7.53. 3j:Mp 115-116 ℃. IR (KBr, cm-1): ν 3429 (NH), 1684 (C5O), 1664 (C5O). 1H NMR (400 MHz, CDCl3): δ 0.85 (t, 3H, J = 6.8 Hz), 1.26-1.38 (m, 12H), 1.52 (t, 3H, J = 6.8 Hz), 1.68-1.71 (m, 2H), 2.82 (q, 2H, J = 7.6 Hz), 4.54 (q, 2H, J = 6.8 Hz), 7.37 (s, 1H), 7.76-7.85 (m, 3H), 9.37-9.42 (m, 1H), 10.19 (d, 1H, J = 9.6 Hz), 11.15 (s, 1H). 13CNMR(100 MHz, CDCl3): δ 9.2, 9.8, 17.8, 24.1, 24.4, 24.5, 24.6, 25.3, 26.3, 26.9, 55.7, 96.1, 107.2, 114.2, 121.9, 127.4, 128.3, 130.5, 131.4, 131.8, 132.2, 137.1, 139.2, 141.6, 146.5, 164.5, 168.6. Anal. Calcd. for C27H31NO3S: C 72.13, H 6.95, N 3.12, S 7.13; Found: C 72.21, H 7.14, N 3.25, S 7.21. 3k:Mp 126-127 ℃. IR (KBr, cm-1): ν 3434 (NH), 1691 (C5O), 1649 (C5O). 1H NMR (400 MHz, CDCl3): δ 1.56 (t, 3H, J = 6.8 Hz), 4.55 (q, 2H, J = 6.8 Hz), 7.28-7.30 (m, 1H), 7.36-7.40 (m, 2H), 7.60-7.62 (m, 2H), 7.77-7.81 (m, 1H), 7.86-7.22 (m, 3H), 9.40 (d, 1H, J = 10.4 Hz), 10.19-10.20 (m, 1H), 11.02 (s, 1H). 13C NMR (100 MHz, CDCl3): δ 14.7, 60.7, 100.1, 112.2, 118.3, 125.6, 127.7, 129.0, 132.5, 133.4, 133.5, 134.1, 135.9, 136.0, 137.2, 142.0, 144.1, 147.1, 150.6, 166.2, 173.5. Anal. Calcd. for C24H17NO3S: C 72.16, H 4.29, N 3.51, S 8.03; Found: C 72.28, H 4.45, N 3.67, S 8.19. 3l:Mp 204-206 ℃. IR (KBr, cm-1): ν 3419 (NH), 1681 (C5O), 1654 (C5O). 1H NMR (400 MHz, CDCl3): δ 1.50 (t, 3H, J = 6.8 Hz), 1.75-1.89 (m, 2H), 2.71-2.83 (m, 2H), 3.23-3.31 (m, 2H), 4.53 (q, 2H, J = 6.8 Hz), 7.72-7.85 (m, 3H), 9.36 (d, 1H, J = 10.0 Hz), 10.14-10.19 (m, 1H), 11.13 (s, 1H). 13C NMR (100 MHz, CDCl3): δ 14.6, 27.4, 29.1, 31.0, 59.6, 103.1, 107.3, 114.5, 122.7, 127.9, 128.5, 130.4, 131.0, 131.4, 132.1, 137.6, 140.2, 141.3, 146.0, 164.7, 168.1. Anal. Calcd. for C21H17NO3S: C 69.40, H 4.71, N 3.85, S 8.82; Found: C 69.56, H 4.82, N 3.96, S 8.98. 3m: Mp 213-215 ℃. IR (KBr, cm-1): ν 3416 (NH), 1685 (C5O), 1658 (C5O). 1H NMR (400 MHz, CDCl3): δ 1.51 (t, 3H, J = 6.8 Hz), 1.80-1.92 (m, 4H), 2.74-2.81 (m, 2H), 3.25-3.34 (m, 2H), 4.52 (q, 2H, J = 6.8 Hz), 7.71-7.82 (m, 3H), 9.34 (d, 1H, J = 10.0 Hz), 10.17-10.20 (m, 1H), 11.10 (s, 1H). 13CNMR(100 MHz, CDCl3): δ 14.7, 23.0, 23.4, 24.7, 27.1, 59.7, 105.1, 108.2, 113.8, 122.1, 127.6, 128.6, 130.2, 131.6, 132.0, 132.6, 137.6, 140.2, 141.7, 146.8, 165.4, 168.3. Anal. Calcd. for C22H19NO3S: C 70.00, H 5.07, N 3.71, S 8.50; Found: C 70.17, H 5.14, N 3.85, S 8.65.

  • 加载中
    1. [1]

      Bo YuPengchen DuJianwen GuoHanshen XinJianhua Zhang . Nonalternant isomer of pentacene fusing two azulene units. Chinese Chemical Letters, 2024, 35(5): 109321-. doi: 10.1016/j.cclet.2023.109321

    2. [2]

      Youxiang HeYongfa ZhuMing LuoHaiping Xia . A nonalternant analogue of pentacene incorporating a non-terminal azulene unit. Chinese Chemical Letters, 2025, 36(7): 110463-. doi: 10.1016/j.cclet.2024.110463

    3. [3]

      Minghui WuMarkus MühlinghausXuechao LiChaojie XuQiang ChenHaiming ZhangKlaus MüllenLifeng Chi . On-Surface Synthesis of Chevron-Shaped Conjugated Ladder Polymers Consisting of Benzo[a]azulene Units. Acta Physico-Chimica Sinica, 2024, 40(8): 2307024-0. doi: 10.3866/PKU.WHXB202307024

    4. [4]

      Yu-Chen FangJia-He ChenMi-Zhuan LiHui-Min LiMei BaiYong-Zheng ChenZi-Wei GaoWen-Yong Han . Forging of silaoxycarbocyclics by interrupted Catellani reaction. Chinese Chemical Letters, 2025, 36(7): 110474-. doi: 10.1016/j.cclet.2024.110474

    5. [5]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    6. [6]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

    7. [7]

      Tiantian LongHongmei LuoJingbo SunFengniu LuYi ChenDong XuZhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728

    8. [8]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    9. [9]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    10. [10]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    11. [11]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    12. [12]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    13. [13]

      Zhuwen WeiJiayan ChenCongzhen XieYang ChenShifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677

    14. [14]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

    15. [15]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    16. [16]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    17. [17]

      Yan GuoHongtao BianLe YuJiani MaYu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971

    18. [18]

      Xuan LiuQing Li . Tailoring interatomic active sites for highly selective electrocatalytic biomass conversion reaction. Chinese Chemical Letters, 2025, 36(4): 110670-. doi: 10.1016/j.cclet.2024.110670

    19. [19]

      Xin LiJia-Min LuBo LiChen ZhaoBei-Bei YangLi Li . Chiroptical sensing for remote chiral amines via a C–H activation reaction. Chinese Chemical Letters, 2025, 36(5): 110310-. doi: 10.1016/j.cclet.2024.110310

    20. [20]

      Haixia WuKailu Guo . Sulfur reduction reaction mechanism elucidated with in situ Raman spectroscopy. Chinese Chemical Letters, 2025, 36(6): 110654-. doi: 10.1016/j.cclet.2024.110654

Metrics
  • PDF Downloads(0)
  • Abstract views(1036)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return