Citation: Xiao-Ji Ye, Zhuo-Xi Ma, Yi-Xi Song, Jia-Jia Huang, Min-Zhi Rong, Ming-Qiu Zhang. SbF5-loaded microcapsules for ultrafast self-healing of polymer[J]. Chinese Chemical Letters, ;2014, 25(12): 1565-1568. doi: 10.1016/j.cclet.2014.07.002 shu

SbF5-loaded microcapsules for ultrafast self-healing of polymer

  • Corresponding author: Ming-Qiu Zhang, 
  • Received Date: 22 May 2014
    Available Online: 1 July 2014

    Fund Project: the Science and Technology Program of Guangdong Province (Nos. 2010B010800021, 2010A011300004, 2011A091102001 and S2013020013029) (No. 20090171110026)

  • To accelerate self-healing speed of epoxy materials, epoxy-SbF5 cure was introduced into the healing chemistry. Due to the high activity of SbF5, a milder SbF5-ethanol complex with improved processability was prepared, but it was still quite active and cannot be encapsulated by conventional encapsulation techniques like in situ polymerization. Accordingly, a novel route was proposed. Hollow silica microcapsules were firstly synthesized via sol-gel technique, which were then steeped in ethanol solution of SbF5-ethanol complex under vacuum, allowing infiltration of the latter into the capsules. The optimal formulation for creating the hollow silica capsules was studied in detail. Moreover, the results of optical pyrometry demonstrated that the encapsulated chemical retained its high reactivity toward the epoxy.
  • 加载中
    1. [1]

      [1] M.Q. Zhang, M.Z. Rong, Self-Healing Polymers and Polymer Composites, John Wiley & Sons Inc., Hoboken, 2011.

    2. [2]

      [2] Y.C. Yuan, Y. Tao, M.Z. Rong, M.Q. Zhang, Self healing in polymers and polymer composites. Concepts, realization and outlook: a review, Express Polym. Lett. 2 (2008) 238-250.

    3. [3]

      [3] M.Q. Zhang, M.Z. Rong, Self-healing polymeric materials towards strength recovery for structural applications, Acta Polym. Sin. 11 (2012) 1183-1199.

    4. [4]

      [4] M.Q. Zhang, M.Z. Rong, Intrinsic self-healing of covalent polymers through bond reconnection towards strength restoration, Polym. Chem. 4 (2013) 4878-4884.

    5. [5]

      [5] M.Q. Zhang, M.Z. Rong, Design and synthesis of self-healing polymers, Sci. China Chem. 55 (2012) 648-676.

    6. [6]

      [6] M.Q. Zhang, M.Z. Rong, Theoretical consideration and modeling of self-healing polymers, J. Polym. Sci. B: Polym. Phys. 50 (2012) 229-241.

    7. [7]

      [7] M.Q. Zhang, Sunlight stimulated repeated self-healing, Express Polym. Lett. 6 (2012) 95-95.

    8. [8]

      [8] S.R. White, N.R. Sottos, P.H. Geubelle, et al., Autonomic healing of polymer composites, Nature 409 (2001) 794-797.

    9. [9]

      [9] B.J. Blaiszik, S.L.B. Kramer, S.C. Olugebefola, et al., Self-healing polymers and composites, Ann. Rev. Mater. Res. 40 (2010) 179-211.

    10. [10]

      [10] D.Y. Zhu, M.Z. Rong, M.Q. Zhang, Preparation and characterization of multilayered microcapsule-like microreactor for self-healing polymers, Polymer 54 (2013) 4227-4236.

    11. [11]

      [11] C.E. Yuan, M.Z. Rong, M.Q. Zhang, Application of alkoxyamine in self-healing of epoxy, J. Mater. Chem. A 2 (2014) 6558-6566.

    12. [12]

      [12] S. Billiet, X.K.D. Hillewaere, R.F.A. Teixeira, F.E. Du Prez, Chemistry of crosslinking processes for self-healing polymers, Macromol. Rapid Commun. 34 (2013) 290-309.

    13. [13]

      [13] D.Y. Zhu, B. Wetzel, A. Noll, M.Z. Rong, M.Q. Zhang, Thermo-molded self-healing thermoplastics containing multilayer microreactors, J. Mater. Chem. A 1 (2013) 7191-7198.

    14. [14]

      [14] Z.Q. Lei, H.P. Xiang, Y.J. Yuan, M.Z. Rong, M.Q. Zhang, Room-temperature selfhealable and remoldable cross-linked polymer based on the dynamic exchange of disulfide bonds, Chem. Mater. 26 (2014) 2038-2046.

    15. [15]

      [15] C.E. Yuan, M.Z. Rong, M.Q. Zhang, Self-healing polyurethane elastomer with thermally reversible alkoxyamines as crosslinkages, Polymer 55 (2014) 1782-1791.

    16. [16]

      [16] Z.P. Zhang, M.Z. Rong, M.Q. Zhang, C.E. Yuan, Alkoxyamine with reduced homolysis temperature and its application in repeated autonomous self-healing of stiff polymers, Polym. Chem. 4 (2013) 4648-4654.

    17. [17]

      [17] X.J. Ye, J.L. Zhang, Y. Zhu, et al., Ultrafast self-healing of polymer toward strength restoration, ACS Appl. Mater. Interfaces 6 (2014) 3661-3670.

    18. [18]

      [18] J. Lee, M. Zhang, D. Bhattacharyya, et al., Micromechanical behavior of self-healing epoxy and hardener-loaded microcapsules by nanoindentation, Mater. Lett. 76 (2012) 62-65.

    19. [19]

      [19] Y.C. Yuan, M.Z. Rong, M.Q. Zhang, et al., Self-healing polymeric materials using epoxy/mercaptan as the healant, Macromolecules 41 (2008) 5197-5202.

    20. [20]

      [20] D.S. Xiao, Y.C. Yuan, M.Z. Rong, M.Q. Zhang, Hollow polymeric microcapsules: Preparation, characterization and application in holding boron trifluoride diethyl etherate, Polymer 50 (2009) 560-568.

    21. [21]

      [21] J.M. Sá enz, J.M. Asua, Dispersion copolymerization of styrene and butyl acrylate in polar solvents, J. Polym. Sci. A: Polym. Chem. 34 (1996) 1977-1992.

    22. [22]

      [22] H.H. Wu, Z.M. Zhang, E.B. Wang, Synthesis and structure of a pure inorganic polyoxo-metalate-based porous framework, Chin. Chem. Lett. 23 (2012) 355-358.

  • 加载中
    1. [1]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    2. [2]

      Salim UllahJianliang ShenHong-Tao Xu . Innovative self-healing conductive organogel: Pioneering the future of electronics. Chinese Chemical Letters, 2025, 36(3): 110553-. doi: 10.1016/j.cclet.2024.110553

    3. [3]

      Supphachok ChanmungkalakulSyed Ali Abbas AbediFederico J. HernándezJianwei XuXiaogang Liu . The dark side of cyclooctatetraene (COT): Photophysics in the singlet states of “self-healing” dyes. Chinese Chemical Letters, 2024, 35(8): 109227-. doi: 10.1016/j.cclet.2023.109227

    4. [4]

      Mengxiu LiJiahui MaoJiangfeng NiLiang Li . Three birds with one stone: modification of Li5FeO4 with thermal induction of Lewis acid. Acta Physico-Chimica Sinica, 2026, 42(4): 100189-0. doi: 10.1016/j.actphy.2025.100189

    5. [5]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    6. [6]

      Ruofan QiJing ZhangWang SunBai YuZhenhua WangKening Sun . Solid-acid-Lewis-base interaction accelerates lithium ion transport for uniform lithium deposition. Chinese Chemical Letters, 2025, 36(6): 110009-. doi: 10.1016/j.cclet.2024.110009

    7. [7]

      Jun LiShi-Hu DuYao ZhangJia LiuJing ChenShi-Bo Cheng . Shell-independent superhalogen formation in aluminum-based clusters via boron Lewis acid ligands functionalization. Chinese Chemical Letters, 2026, 37(1): 111177-. doi: 10.1016/j.cclet.2025.111177

    8. [8]

      Aijia ZhangGuiyuan ZhaoGuangli XiangRui ChenYu DongQijie DiaoJialin WangXiaohui LinWenxuan ZengTianze JiangJun WuXia Zhao . Barnacle-inspired chitosan glycerin gel for skin protection and wound healing in harsh environments. Chinese Chemical Letters, 2025, 36(8): 110767-. doi: 10.1016/j.cclet.2024.110767

    9. [9]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    10. [10]

      Peizhe LiQiaoling LiuMengyu PeiYuci GanYan GongChuchen GongPei WangMingsong WangXiansong WangDa-Peng YangBo LiangGuangyu Ji . Chlorogenic acid supported strontium polyphenol networks ensemble microneedle patch to promote diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109457-. doi: 10.1016/j.cclet.2023.109457

    11. [11]

      Saadullah KhattakHong-Tao XuJianliang Shen . Bio-electronic bandage: Self-powered performances to accelerate intestinal wound healing. Chinese Chemical Letters, 2024, 35(12): 110210-. doi: 10.1016/j.cclet.2024.110210

    12. [12]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    13. [13]

      Danfeng ZhaoJing LinRushuo LiLiang ChuZhaokun WangXiubing HuangGe Wang . Constructing frustrated Lewis pairs on porous Ce-based metal-organic frameworks with improved dicyclopentadiene hydrogenation activity. Chinese Chemical Letters, 2025, 36(7): 110172-. doi: 10.1016/j.cclet.2024.110172

    14. [14]

      Huarui Han Yangrui Xu Yu Cheng Liguang Tang Jie Jin Xinlin Liu Changchang Ma Ziyang Lu . Frustrated Lewis pairs in CO2 photoreduction: A review on synergistic activation and charge separation. Chinese Journal of Structural Chemistry, 2025, 44(10): 100728-100728. doi: 10.1016/j.cjsc.2025.100728

    15. [15]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    16. [16]

      Mengya GeZijie ZhouHuaiyang ZhuYing WangChao WangChao LaiQinghong Wang . Multifunctional gel electrolytes for high-performance zinc metal batteries. Chinese Chemical Letters, 2025, 36(7): 110121-. doi: 10.1016/j.cclet.2024.110121

    17. [17]

      Hongfei LiHao ChenQi KangLihe GuoXingyi HuangHaiping Xu . Gel polymer electrolyte for flexible and stretchable lithium metal battery: Advances and prospects. Chinese Chemical Letters, 2025, 36(9): 110325-. doi: 10.1016/j.cclet.2024.110325

    18. [18]

      Mianfeng LiHaozhi WangZijun YangZexiang YinYuan LiuYingmei BianYang WangXuerong ZhengYida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199

    19. [19]

      Lanxin WangKaiwei LiangXuelian YuGuocheng LvLibing Liao . Facile method for creating frustrated Lewis pairs in g-C3N4 to enhance photocatalytic nitrogen fixation performance. Chinese Chemical Letters, 2026, 37(1): 110572-. doi: 10.1016/j.cclet.2024.110572

    20. [20]

      Qingxuan KongChangwei JiangBin LyuZhaoting LiNing JiaoSong Song . Denitrative iodination of nitroarenes with hydroiodic acid. Chinese Chemical Letters, 2025, 36(10): 111444-. doi: 10.1016/j.cclet.2025.111444

Metrics
  • PDF Downloads(0)
  • Abstract views(1137)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return