Citation:
Dong-Jun Fu, Yu Jin, Mu-Qing Xie, Ya-Jing Ye, Dong-Dong Qin, Kai-Yan Lou, Yan-Zuo Chen, Feng Gao. Preparation and characterization of mPEG grafted chitosan micelles as 5-fluorouracil carriers for effective anti-tumor activity[J]. Chinese Chemical Letters,
;2014, 25(11): 1435-1440.
doi:
10.1016/j.cclet.2014.06.027
-
The objective of this study was to investigate the potential of methoxy polyethylene glycol (mPEG) grafted chitosan (mPEG-g-CS) to be used as a drug carrier. mPEG-g-CS was successfully synthesized by one-step method with formaldehyde. The substitution degree of mPEG on chitosan was calculated by elemental analysis and was found to be (3.23±0.25)%. mPEG-g-CS self-assembled micelles were prepared by ultrasonic method with the controlled size of 178.5-195.1 nm and spherical morphology. Stable dispersion of the micelles was formed with the zeta potential of 2.3-30.2 mV. 5-Fluorouracil (5-FU), an anticancer chemotherapy drug, was used as a model drug to evaluate the efficiency of the new drug delivery carrier. The loading efficiency of 5-FU was (4.01±0.03)%, and the drug-loaded mPEG-g-CS self-assembled micelle showed a controlled-release effect. In summary, the mPEG-g-CS self-assembled micelle is proved to be a promising carrier with controlled particle size and controlled-release effect. Therefore, it has great potential for the application as 5-FU carriers for effective anti-tumor activity.
-
-
-
[1]
[1] O.C. Farokhzad, R. Langer, Impact of nanotechnology on drug delivery, ACS Nano 3 (2009) 16-20.
-
[2]
[2] T. Ngawhirunpat, N. Wonglertnirant, P. Opanasopit, et al., Incorporation methods for cholic acid chitosan-g-mPEG self-assembly micellar system containing camptothecin, Colloids Surf. B: Biointerfaces 74 (2009) 253-259.
-
[3]
[3] X.H. Peng, L. Zhang, Self-assembled micelles of N-phthaloyl-carboxymethy chitosan for drug delivery, Colloids Surf. A: Physicochem. Eng. Asp. 337 (2009) 21-25.
-
[4]
[4] G. Gaucher, M.H. Dufresne, V.P. Sant, et al., Block copolymer micelles: preparation, characterization and application in drug delivery, J. Control. Release 109 (2005) 169-188.
-
[5]
[5] A.A. Sunil, N.M. Nadagouda, M.A. Tejraj, Recent advances on chitosan-based micro- and nanoparticles in drug delivery, J. Control. Release 100 (2004) 5-28.
-
[6]
[6] Z.T. Yuan, Y.J. Ye, F. Gao, et al., Chitosan-graft-β-cyclodextrin nanoparticles as a carrier for controlled drug release, Int. J. Pharm. 446 (2013) 191-198.
-
[7]
[7] S.S. Gao, J. Sun, F. Gao, et al., Preparation, characterization and pharmacokinetic studies of tacrolimus-dimethyl-β-cyclodextrin inclusion complex-loaded albumin nanoparticles, Int. J. Pharm. 427 (2012) 410-416.
-
[8]
[8] Y. Sun, L. Gu, Y. Gao, Preparation and characterization of 5-fluorouracil loaded chitosan microspheres by a two-step solidification method, Chem. Pharm. Bull. 58 (2010) 891-895.
-
[9]
[9] Q. Gan, T. Wang, Chitosan nanoparticle as protein delivery carrier - systematic examination of fabrication conditions for efficient loading and release, Colloids Surf. B: Biointerfaces 59 (2007) 24-34.
-
[10]
[10] A.W. Wu, B.B. Wu, J.M. Wu, et al., Chitosan nanoparticles crosslinked by glycidoxypropyltrimethoxysilane for pH triggered release of protein, Chin. Chem. Lett. 20 (2009) 79-83.
-
[11]
[11] X.Y. Kong, X.Y. Li, X.H. Wang, et al., Synthesis and characterization of a novel mPEG-chitosan diblock copolymer and self-assembly of nanoparticles, Carbohydr. Polym. 79 (2010) 170-175.
-
[12]
[12] A. Miwa, A. Ishibe, M. Nakano, et al., Development of novel chitosan derivatives as micellar carriers of taxol, Pharm. Res. 15 (1998) 1844-1850.
-
[13]
[13] C. Zhang, P. Qineng, H.J. Zhang, Self-assembly and characterization of paclitaxelloaded N-octyl-O-sulfate chitosan micellar system, Colloids Surf. B: Biointerfaces 39 (2004) 69-75.
-
[14]
[14] D.W. Zhu, J.G. Bo, K.D. Yao, et al., Synthesis of N-methylene phosphonic chitosan (NMPCS) and its potential as gene carrier, Chin. Chem. Lett. 18 (2007) 1407-1410.
-
[15]
[15] P. Chan, M. Kurisawa, J.E. Chung, et al., Synthesis and characterization of chitosang- poly (ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery, Biomaterials 28 (2007) 540-549.
-
[16]
[16] A.J. Dong, M.H. Feng, H.Y. Qi, et al., Synthesis and properties of O-carboxymethyl chitosan/methoxy poly (ethylene glycol) graft copolymers, J. Mater. Sci. Mater. Med. 19 (2008) 869-876.
-
[17]
[17] S.Y. Zhu, F. Qian, Y. Zhang, et al., Synthesis and characterization of PEG modified N-trimethylaminoethylmethacrylate chitosan nanoparticle, Eur. Polym. J. 43 (2007) 2244-2253.
-
[18]
[18] A.R. Kulkarni, Y.H. Lin, H.F. Liang, et al., A novel method for the preparation of nanoaggregates of methoxy polyethyleneglycol linked chitosan, J. Nanosci. Nanotechnol. 6 (2006) 2867-2873.
-
[19]
[19] T. Peng, Y. Li, D. Ahn, et al., Synthesis and characterization of pH-responsive poly (2-hydroxyethyl aspartamide)-g-poly (b-amino ester) graft copolymer micelles as potential drug carriers, Macromol. Res. 21 (2013) 400-405.
-
[1]
-
-
-
[1]
An Lu , Yuhao Guo , Yi Yan , Lin Zhai , Xiangyu Wang , Weiran Cao , Zijie Li , Zhixia Zhao , Yujie Shi , Yuanjun Zhu , Xiaoyan Liu , Huining He , Zhiyu Wang , Jian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928
-
[2]
Wei Su , Xiaoyan Luo , Peiyuan Li , Ying Zhang , Chenxiang Lin , Kang Wang , Jianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522
-
[3]
Yihao Zhang , Yang Jiao , Xianchao Jia , Qiaojia Guo , Chunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748
-
[4]
Yuwen Zhu , Xiang Deng , Yan Wu , Baode Shen , Lingyu Hang , Yuye Xue , Hailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733
-
[5]
Luyu Zhang , Zirong Dong , Shuai Yu , Guangyue Li , Weiwen Kong , Wenjuan Liu , Haisheng He , Yi Lu , Wei Wu , Jianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101
-
[6]
Hao Zhang , Haonan Qu , Ehsan Bahojb Noruzi , Haibing Li , Feng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731
-
[7]
Jinjie Lu , Qikai Liu , Yuting Zhang , Yi Zhou , Yanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406
-
[8]
Yue Ren , Kang Li , Yi-Zi Wang , Shao-Peng Zhao , Shu-Min Pan , Haojie Fu , Mengfan Jing , Yaming Wang , Fengyuan Yang , Chuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468
-
[9]
Linshan Peng , Qihang Peng , Tianxiang Jin , Zhirong Liu , Yong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891
-
[10]
Rui Li , Ruijie Lu , Libin Yang , Jianwen Li , Zige Guo , Qiquan Yan , Mengjun Li , Yazhuo Ni , Keying Chen , Yaoyang Li , Bo Xu , Mengzhen Cui , Zhan Li , Zhiying Zhao . Immobilization of chitosan nano-hydroxyapatite alendronate composite microspheres on polyetheretherketone surface to enhance osseointegration by inhibiting osteoclastogenesis and promoting osteogenesis. Chinese Chemical Letters, 2025, 36(4): 110242-. doi: 10.1016/j.cclet.2024.110242
-
[11]
Shaojie Deng , Peihua Ma , Qinghong Bai , Xin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878
-
[12]
Caixia Li , Yi Qiu , Yufeng Zhao , Wuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846
-
[13]
Mengxiang Zhu , Tao Ding , Yunzhang Li , Yuanjie Peng , Ruiping Liu , Quan Zou , Leilei Yang , Shenglei Sun , Pin Zhou , Guosheng Shi , Dongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833
-
[14]
Hao Wang , Meng-Qi Pan , Ya-Fei Wang , Chao Chen , Jian Xu , Yuan-Yuan Gao , Chuan-Song Qi , Wei Li , Xian-He Bu . Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chinese Chemical Letters, 2024, 35(10): 109581-. doi: 10.1016/j.cclet.2024.109581
-
[15]
Zheyi Li , Xiaoyang Liang , Zitong Qiu , Zimeng Liu , Siyu Wang , Yue Zhou , Nan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592
-
[16]
Jiaxu Wang , Jinxie Zhang , Xiuping Wang , Jingying Wang , Lina Chen , Jiahui Cao , Wei Cao , Siyu Liang , Ping Luan , Ke Zheng , Xiao-Kun Ouyang , Li Gao , Xiaowen Ou , Fan Zhang , Meitong Ou , Lin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697
-
[17]
Zhixiao Xiong , Shanni Qiu , Yuyu Wang , Houna Duan , Yi Xiao , Yufang Xu , Weiping Zhu , Xuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002
-
[18]
Xiaohong Wen , Mei Yang , Lie Li , Mingmin Huang , Wei Cui , Suping Li , Haiyan Chen , Chen Li , Qiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291
-
[19]
Mingqi Wang , Shixin Fa , Jiate Yu , Guoxian Zhang , Yi Yan , Qing Liu , Qiuyu Zhang . Light-controlled protein imprinted nanospheres with variable recognition specificity. Chinese Chemical Letters, 2025, 36(2): 110124-. doi: 10.1016/j.cclet.2024.110124
-
[20]
Tong Zhang , Chao Sun , Shubin Yang , Zimin Cai , Sifeng Zhu , Wendian Liu , Yun Luan , Cheng Wang . Inhalation of taraxasterol loaded mixed micelles for the treatment of idiopathic pulmonary fibrosis. Chinese Chemical Letters, 2024, 35(8): 109248-. doi: 10.1016/j.cclet.2023.109248
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(800)
- HTML views(63)