Citation: A. Benvidi, M.T. Ghanbarzadeh, M. Dehghan, M. Mazloum-Ardakani, R. Vafazadeh. Thiocyanate ion selective electrode based on bis(N-3-methylphenyl salicylidenaminato)copper(Ⅱ) ionophore[J]. Chinese Chemical Letters, ;2014, 25(12): 1639-1642. doi: 10.1016/j.cclet.2014.06.020 shu

Thiocyanate ion selective electrode based on bis(N-3-methylphenyl salicylidenaminato)copper(Ⅱ) ionophore

  • Corresponding author: A. Benvidi, 
  • Received Date: 28 February 2014
    Available Online: 6 June 2014

  • In this work a PVC membrane electrode based on bis(N-3-methyl phenyl salicylidenaminato)copper(Ⅱ) as ionophore was prepared. The electrode was tested by inorganic anions and showed good selectivity for thiocyanate ion. This sensor showed Nerstian behavior with a slope of a 59.3 mV per decade at 25 ℃. The proposed electrode exhibited a wide linear range from 1.0×10-6 mol/L to 1.0×10-1 mol/L with a detection limit of 5.0×10-7 mol/L. The electrode response was independent of pH in the range of 4.0-10.0. The response time is about 9-21 s, and the electrode can be used for over 60 days without considerable deterioration. The prepared sensor was applied as an indicator electrode in potentiometric titration of SCN- with Ag+ ion and to determine the thiocyanate in samples of urine and saliva.
  • 加载中
    1. [1]

      [1] Y. Xie, F. Zhang, L. Pingle, F. Hao, H. Luo, Catalytic oxidation of cyclohexane with dioxygen over boehmite supported trans-A2B2 type metalloporphyrins catalyst, J. Mol. Catal. 386 (2014) 95-100.

    2. [2]

      [2] W.J. Sun, J. Li, G.P. Yao, F.X. Zhang, J.L. Wang, Surface-modification of TiO2 with new metalloporphyrins and their photocatalytic activity in the degradation of 4-notrophenol, J. Appl. Surf. Sci. 258 (2011) 940-945.

    3. [3]

      [3] M. Penza, R. Rossi, M. Alvisi, M.A. Signore, Metalloporphyrins modified carbon nanotubes networked films-based chemical sensors for enhanced gas sensitivity, Sens. Actuators B 144 (2010) 387-394.

    4. [4]

      [4] D. Arıcan, M. Arıcı, A. Lü tfi Uğur, A. Erdoğmuş, Effects of peripheral and nonperipheral substitution to the spectroscopic, electrochemical and spectroelectrochemical properties of metallophthalocyanines, Electrochim. Acta 106 (2013) 541-555.

    5. [5]

      [5] S. Pedreno, C. Ortuno, J.A. Martinez, Anion selective polymeric membrane electrodes based on cyclopalladated amine complexes, Talanta 47 (1998) 305-310.

    6. [6]

      [6] Z.Q. Li, Z.Y. Wu, R. Yuan, et al., Thiocyanate-selective PVC membrane electrodes based on Mn(Ⅱ) complex of N,N'-bis-(4-phenylazosalicylidene) o-phenylene diamine as a neutral carrier, J. Electrochim. Acta 44 (1999) 2543-2548.

    7. [7]

      [7] Z.Y. Sun, R. Yuan, Y.Q. Chai, et al., Study of a bis-furaldehyde Schiff base copper(Ⅱ) complex as carrier for preparation of highly selective thiocyanate electrodes, Anal. Bioanal. Chem. 378 (2004) 490-494.

    8. [8]

      [8] M.R. Ganjali, T. Poursaberi, F. Basiripour, et al., Highly selective thiocyanate poly(vinyl chloride) membrane electrode based on a Cadmium-Schiff's base complex, J. Anal. Chem. 370 (2001) 1091-1095.

    9. [9]

      [9] A. Abbaspour, M.A. Kamyabi, A.R. Esmaeilbeig, R. Kia, Thiocyanate selective electrode based on unsymmetrical benzoN4 nickel(Ⅱ) macrocyclic complexes, Talanta 57 (2002) 859-867.

    10. [10]

      [10] M.M. Ardakani, A.A. Ensafi, M.S. Niasari, S.M. Chahooki, Selective thiocyanate poly(vinyl chloride) membrane based on a 1,8-dibenzyl-1,3,6,8,10,13-hexaazacyclotetradecane-Ni(Ⅱ) perchlorate, Anal. Chim. Acta 462 (2002) 25-30.

    11. [11]

      [11] T. Poursaberi, M. Salavati Niassari, S. Khodabakhsh, et al., A selective membrane electrode for thiocyanate ion based on a copper-1,8-dimethyl-1,3,6,8,10,13-hexaazayclotetradecane complex as ionophore, Anal. Lett. 34 (2001) 2621-2632.

    12. [12]

      [12] R.E. Bliss, K.A. O'Connell, Problems with thiocyanate as an index of smoking status: a critical review with suggestions with improving the usefulness of biochemical measures in smoking cessation research, Health Psychol. 3 (1984) 563-581.

    13. [13]

      [13] B. Tossanaitada, T. Masadome, T. Imato, Sequential injection analysis of thiocyanate ions using a microfluidic polymer chip with an embedded ion-selective electrode, Anal. Sci. 30 (2014) 507-511.

    14. [14]

      [14] A.K. Singh, U.P. Singh, S. Mehtab, Thiocyanate selective sensor based on tripodal zinc complex for direct determination of thiocyanate in biological samples, Sens. Actuators B 125 (2007) 453-461.

    15. [15]

      [15] M. Aravand, M.A. Zanjanchi, L. Heydari, Novel thiocyanate-selective membrane sensor based on crown ether-cetyltrimethyl ammonium thiocyanate ion-pair as a suitable ionophore, Sens. Actuators B 122 (2007) 301-308.

    16. [16]

      [16] P. Buhlmann, L. Yahya, R. Endress, Ion-selective electrodes for thiocyanate based on the dinuclear zinc(Ⅱ) complex of a bis-N,O-bidentate Schiff base, Electroanalysis 16 (2004) 973-978.

    17. [17]

      [17] W.J. Xu, Y.Q. Chai, R. Yuan, S.L. Liu, A novel thiocyanate-selective electrode based on a zinc-phthalocyanine complex, Anal. Bioanal. Chem. 385 (2006) 926-930.

    18. [18]

      [18] M.J. Segui, J. Lizondo Sabater, R. Martinez Manez, Linear polyamines as carriers in thiocyanate-selective membrane electrodes, Talanta 68 (2005) 1182-1189.

    19. [19]

      [19] M.M. Ardakani, A. Sadeghi, M. Salavati Niasari, Highly selective thiocyanate membrane electrode based on butane-2,3-dione bis(salicylhydrazonato)zinc(Ⅱ) complex, Talanta 66 (2005) 837-843.

    20. [20]

      [20] A. Badri, P. Pouladsaz, Highly selective and sensitive thiocyanate PVC membrane electrodes based on modified Zeolite ZSM-5, Int. J. Electrochem. Sci. 6 (2011) 3178-3195.

    21. [21]

      [21] W.S. Han, T.K. Hong, Y.H. Lee, Thiocyanate ion selective solid contact electrode based on Mn complex of N,N'-bis-(4-phenylazosalicylidene)-O-phenylene diamine ionophore, J. Am. Anal. Chem. 2 (2011) 731-738.

    22. [22]

      [22] R. Vafazadeh, V. Hayeri, A.C. Willis, Synthesis, crystal structure and electronic properties of bis(N-2-bromophenyl-salicydenaminato)copper(Ⅱ) complex, Polyhedron 29 (2010) 1810-1814.

    23. [23]

      [23] E. Bakker, P. Buehlman, E. Pretsch, Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics, Chem. Rev. 97 (1997) 3083-3132.

    24. [24]

      [24] G.W. Whiston, The determination of thiocyanate in coal-carbonising plant effluents, sewage works influents and effluents and polluted waters, Analyst 87 (1962) 819-823.

    25. [25]

      [25] J.C. Miller, J.N. Miller, Statistics for Analytical Chemistry, 2nd ed., Ellis Horwood, Chichester, 1988.

  • 加载中
    1. [1]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    2. [2]

      Lili ZhangHui GaoGong ZhangYuning DongKai HuangZifan PangTuo WangChunlei PeiPeng ZhangJinlong Gong . Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO2 reduction reaction through numerical simulations. Chinese Chemical Letters, 2025, 36(1): 110204-. doi: 10.1016/j.cclet.2024.110204

    3. [3]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    4. [4]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    5. [5]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    6. [6]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    7. [7]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    8. [8]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    9. [9]

      Zhongxiong Sun Haili Song Mei-Huan Zhao Yijie Zeng Man-Rong Li . Structural determination and exotic resistive behaviour of α-RuI3 under high-pressure. Chinese Journal of Structural Chemistry, 2025, 44(2): 100429-100429. doi: 10.1016/j.cjsc.2024.100429

    10. [10]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    11. [11]

      Dan ZhouLiangjin BaoHaoqi LongDuo ZhouYuwei XuBo WangChuanqin XiaLiang XianChengbin Zheng . Capillary electrophoresis as sample introduction system for highly sensitive and interference-free determination of 99Tc by ICP-MS. Chinese Chemical Letters, 2025, 36(4): 110093-. doi: 10.1016/j.cclet.2024.110093

    12. [12]

      Jianwen ZhaoShuai WangShanshan ZhaoLiwei ChenFangang MengXuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883

    13. [13]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    14. [14]

      Zhenqiang GuoHuicong YangQian WeiShengjun XuGuangjian HuShuo BaiFeng Li . Dual-additives enable stable electrode-electrolyte interfaces for long life Li-SPAN batteries. Chinese Chemical Letters, 2024, 35(5): 108622-. doi: 10.1016/j.cclet.2023.108622

    15. [15]

      Hongjie GuoQiang WeiYangyang WuWei QiuHongliang LiChangyong Zhang . Enhanced nitrate removal from groundwater using a conductive spacer in flow-electrode capacitive deionization. Chinese Chemical Letters, 2024, 35(8): 109325-. doi: 10.1016/j.cclet.2023.109325

    16. [16]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    17. [17]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

    18. [18]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    19. [19]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    20. [20]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

Metrics
  • PDF Downloads(0)
  • Abstract views(555)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return