Citation: Chen-Huan Wang, Xiao-Xing Ma, Chun Wang, Qiu-Hua Wu, Zhi Wang. Poly(vinylidene fluoride) membrane based thin film microextraction for enrichment of benzoylurea insecticides from water samples followed by their determination with HPLC[J]. Chinese Chemical Letters, ;2014, 25(12): 1625-1629. doi: 10.1016/j.cclet.2014.06.018 shu

Poly(vinylidene fluoride) membrane based thin film microextraction for enrichment of benzoylurea insecticides from water samples followed by their determination with HPLC

  • Corresponding author: Qiu-Hua Wu,  Zhi Wang, 
  • Received Date: 4 May 2014
    Available Online: 16 June 2014

    Fund Project: Financial supports from the National Natural Science Foundation of China (No. 31171698) (No. 31171698) the Innovation Research Program of Department of Education of Hebei for Hebei Provincial Universities (No. LJRC009) (No. LJRC009) and the Natural Science Foundation of Hebei (No. B2012204028) are gratefully acknowledged. (No. ZD20131033)

  • Thin-film microextraction (TFME), a new geometry for solid-phase microextraction, has become an attractive sample-preparation technique. Compared to other microextraction approaches, the sensitivity of this technique was enhanced without sacrificing the sampling time due to the high surface area-tovolume ratio together with the increase of extraction-phase volume. In this paper, a new TFME method based on poly(vinylidene fluoride) membrane was developed for the extraction of benzoylurea insecticides (diflubenzuron, triflumuron, hexaflumuron and teflubenzuron) from water samples followed by their determination with high performance liquid chromatography-diode array detection. Under the optimal conditions, good linearity was observed over the concentration range of 0.5-100.0 ng/mL with correlation coefficient greater than 0.9994. The limits of detection (S/N = 3) of the method for the target analytes were 0.1 ng/mL. Mean recoveries ranged from 87.7% to 103.9% with relative standard deviations lower than 6.5%. The results indicated that the developed TFMEmethod is simple, efficient, and cost effective.
  • 加载中
    1. [1]

      [1] J.K. Zhou, R.Y. Liu, G. Song, M.C. Zhang, Determination of carbamate and benzoylurea insecticides in peach juice drink by floated organic drop microextractionhigh performance liquid chromatography, Anal. Lett. 42 (2009) 1805-1819.

    2. [2]

      [2] F. Matsumura, Studies on the action mechanism of benzoylurea insecticides to inhibit the process of chitin synthesis in insects: a review on the status of research activities in the past, the present and the future prospects, Pestic. Biochem. Physiol. 97 (2010) 133-139.

    3. [3]

      [3] A.C. Gerecke, S. Canonica, S.R. Mü ller, M. Schä rer, R.P. Schwarzenbach, Quantification of dissolved natural organic matter (DOM) mediated phototransformation of phenylurea herbicides in lakes, Environ. Sci. Technol. 35 (2001) 3915-3923.

    4. [4]

      [4] G. García, M. Martínez Galera, D. Barranco Martínez, J. Gisbert Gallego, Determination of benzoylureas in ground water samples by fully automated on-line preconcentration and liquid chromatography-fluorescence detection, J. Chromatogr. A 1103 (2006) 271-277.

    5. [5]

      [5] J. Mensah, E. Lundanes, T. Greibrokk, B. Holen, Determination of diflubenzuron in apples by gas chromatography, J. Chromatogr. A 765 (1997) 85-90.

    6. [6]

      [6] A. Valenzuela, R. Lorenzini, M. Redondo, G. Font, Matrix solid-phase dispersion microextraction and determination by high-performance liquid chromatography with UV detection of pesticide residues in citrus fruit, J. Chromatogr. A 839 (1999) 101-107.

    7. [7]

      [7] G.E. Miliadis, N.G. Tsiropoulos, P.G. Aplada-Sarlis, High-performance liquid chromatographic determination of benzoylurea insecticides residues in grapes and wine using liquid and solid-phase extraction, J. Chromatogr. A 835 (1999) 113-120.

    8. [8]

      [8] A.M. de la Pena, M. Mahedero, A. Bautista-Sánchez, Monitoring of phenylurea and propanil herbicides in river water by solid-phase-extraction high performance liquid chromatography with photoinduced-fluorimetric detection, Talanta 60 (2003) 279-285.

    9. [9]

      [9] A.G. Frenich, M.G. García, F. Arrebola, et al., Determination of parts per trillion levels of benzoylurea pesticides in groundwater by high-performance liquid chromatography-electrospray ionization mass spectrometry, Chromatographia 52 (2000) 569-574.

    10. [10]

      [10] R. Carabias-Martínez, E. Rodríguez-Gonzalo, E. Herrero-Herná ndez, J. Hernández-Mé ndez, Simultaneous determination of phenyl-and sulfonylurea herbicides in water by solid-phase extraction and liquid chromatography with UV diode array or mass spectrometric detection, Anal. Chim. Acta 517 (2004) 71-79.

    11. [11]

      [11] R. Dommarco, A. Santilio, L. Fornarelli, M. Rubbiani, Simultaneous quantitative determination of thirteen urea pesticides at sub-ppb levels on a Zorbax SB-C18 column, J. Chromatogr. A 825 (1998) 200-204.

    12. [12]

      [12] J.C. Wu, C. Tragas, H. Lord, J. Pawliszyn, Analysis of polar pesticides in water and wine samples by automated in-tube solid-phase microextraction coupled with high-performance liquid chromatography-mass spectrometry, J. Chromatogr. A 976 (2002) 357-367.

    13. [13]

      [13] J.F. Zhang, Z. Liang, S. Li, et al., In-situ metathesis reaction combined with ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction method for the determination of phenylurea pesticides in water samples, Talanta 98 (2012) 145-151.

    14. [14]

      [14] R.F. Jiang, J. Pawliszyn, Thin-film microextraction offers another geometry for solid-phase microextraction, Trends Anal. Chem. 39 (2012) 245-253.

    15. [15]

      [15] Z.P. Qin, L. Bragg, G.F. Ouyang, V.H. Niri, J. Pawliszyn, Solid-phase microextraction under controlled agitation conditions for rapid on-site sampling of organic pollutants in water, J. Chromatogr. A 1216 (2009) 6979-6985.

    16. [16]

      [16] M. Saraji, B. Farajmand, Chemically modified cellulose paper as a thin film microextraction phase, J. Chromatogr. A 1314 (2013) 24-30.

    17. [17]

      [17] F.S. Mirnaghi, J. Pawliszyn, Development of coatings for automated 96-blade solid phase microextraction-liquid chromatography-tandem mass spectrometry system, capable of extracting a wide polarity range of analytes from biological fluids, J. Chromatogr. A 1261 (2012) 91-98.

    18. [18]

      [18] F.S. Mirnaghi, M.R.N. Monton, J. Pawliszyn, Thin-film octadecyl-silica glass coating for automated 96-blade solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry for analysis of benzodiazepines, J. Chromatogr. A 1246 (2012) 2-8.

    19. [19]

      [19] S. Deshmukh, K. Li, Effect of ethanol composition in water coagulation bath on morphology of PVDF hollow fibre membranes, J. Membr. Sci. 150 (1998) 75-85.

    20. [20]

      [20] Y. Chen, L. Ying, W. Yu, E. Kang, K. Neoh, Poly(vinylidene fluoride) with grafted poly(ethylene glycol) side chains via the RAFT-mediated process and pore size control of the copolymer membranes, Macromolecules 36 (2003) 9451-9457.

    21. [21]

      [21] Y. Chang, Y.J. Shih, R.C. Ruaan, et al., Preparation of poly (vinylidene fluoride) microfiltration membrane with uniform surface-copolymerized poly (ethylene glycol) methacrylate and improvement of blood compatibility, J. Membr. Sci. 309 (2008) 165-174.

    22. [22]

      [22] S.R. Chae, H. Yamamura, K. Ikeda, Y. Watanabe, Comparison of fouling characteristics of two different poly-vinylidene fluoride microfiltration membranes in a pilot-scale drinking water treatment system using pre-coagulation/sedimentation, sand filtration, and chlorination, Water Res. 42 (2008) 2029-2042.

    23. [23]

      [23] B. Wu, K. Li, W.K. Teo, Preparation and characterization of poly (vinylidene fluoride) hollow fiber membranes for vacuum membrane distillation, J. Appl. Polym. Sci. 106 (2007) 1482-1495.

    24. [24]

      [24] E. Salehi, S. Madaeni, F. Heidary, Dynamic adsorption of Ni (Ⅱ) and Cd (Ⅱ) ions from water using 8-hydroxyquinoline ligand immobilized PVDF membrane: isotherms, thermodynamics and kinetics, Sep. Purif. Technol. 94 (2012) 1-8.

    25. [25]

      [25] X.F. Yin, Z. Li, S.H. Zhang, et al., Determination of strychnine and brucine in traditional Chinese medicine preparations by micelle to solvent stacking in capillary zone electrophoresis, Chin. Chem. Lett. 22 (2011) 330-333.

    26. [26]

      [26] C.X. Wu, Q.H. Wu, C. Wang, Z. Wang, A novel method for the determination of trace copper in cereals by dispersive liquid-liquid microextraction based on solidification of floating organic drop coupled with flame atomic absorption spectrometry, Chin. Chem. Lett. 22 (2011) 473-476.

    27. [27]

      [27] P.P. Vázquez, A.R. Mughari, M.M. Galera, Solid-phase microextraction for the determination of benzoylureas in orange juice using liquid chromatography combined with post-column photochemically induced fluorimetry derivatization and fluorescence detection, J. Sep. Sci. 31 (2008) 56-63.

    28. [28]

      [28] L. Pareja, V. Cesio, H. Heinzen, A.R. Fernandez-Alba, Evaluation of various QuEChERS based methods for the analysis of herbicides and other commonly used pesticides in polished rice by LC-MS/MS, Talanta 83 (2011) 1613-1622.

    29. [29]

      [29] J.H. Zhang, M. Li, M.Y. Yang, et al., Magnetic retrieval of ionic liquids: fast dispersive liquid-liquid microextraction for the determination of benzoylurea insecticides in environmental water samples, J. Chromatogr. A 1254 (2012) 23-29.

    30. [30]

      [30] Q.X. Zhou, X.G. Zhang, Combination of ultrasound-assisted ionic liquid dispersive liquid-phase microextraction and high performance liquid chromatography for the sensitive determination of benzoylureas pesticides in environmental water samples, J. Sep. Sci. 33 (2010) 3734-3740.

  • 加载中
    1. [1]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    2. [2]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    3. [3]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    4. [4]

      Jianwen ZhaoShuai WangShanshan ZhaoLiwei ChenFangang MengXuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883

    5. [5]

      Zili Ma Zeyu Li Jun Lv . Shortening the formation time of oxide thin film photoelectrodes from hours to seconds. Chinese Journal of Structural Chemistry, 2025, 44(4): 100450-100450. doi: 10.1016/j.cjsc.2024.100450

    6. [6]

      Wenli Xu Yingzhao Zhang Rui Wang Chenyang Liu Jialin Liu Xiangyu Huo Xinying Liu He Zhang Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454

    7. [7]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    8. [8]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    9. [9]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    10. [10]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    11. [11]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    12. [12]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    13. [13]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    14. [14]

      Panke ZhouHong YuMun Yin CheeTao ZengTianli JinHongling YuShuo WuWen Siang LewXiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279

    15. [15]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    16. [16]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    17. [17]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    18. [18]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    19. [19]

      Jiaqi LinPupu YangYimin JiangShiqian DuDongcai ZhangGen HuangJinbo WangJun WangQie LiuMiaoyu LiYujie WuPeng LongYangyang ZhouLi TaoShuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435

    20. [20]

      Mengchen Liu Yufei Zhang Yi Xiao Yang Wei Meichen Bi Huaide Jiang Yan Yu Shenghong Zhong . High stretchability and toughness of liquid metal reinforced conductive biocompatible hydrogels for flexible strain sensors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100518-100518. doi: 10.1016/j.cjsc.2025.100518

Metrics
  • PDF Downloads(0)
  • Abstract views(603)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return