Citation: Min Fang, Fang Lei, Jia Zhou, Yong-Ning Wu, Zhi-Yong Gong. Rapid, simple and selective determination of 2,4-dinitrophenol by molecularly imprinted spin column extraction coupled with fluorescence detection[J]. Chinese Chemical Letters, ;2014, 25(11): 1492-1494. doi: 10.1016/j.cclet.2014.06.015 shu

Rapid, simple and selective determination of 2,4-dinitrophenol by molecularly imprinted spin column extraction coupled with fluorescence detection

  • Corresponding author: Zhi-Yong Gong, 
  • Received Date: 11 April 2014
    Available Online: 11 June 2014

    Fund Project: This work was supported by National Key Technology R&D Program in the 11th Five-Year Plan of China (No. 2009BADB9B02) (No. 2009BADB9B02)

  • A rapid, simple and selective method based on molecularly imprinted, spin column extraction coupled with fluorescence detection was successfully established for the determination of 2,4-dinitrophenol in serum samples. The 2,4-dinitrophenol imprinted polymers exhibited highly selective recognition for the template molecule and the maximum adsorption capacity was 138.9 μg/g. The results indicated that when water is used as the loading solution, only 2,4-dinitrophenol could be adsorbed on the spin column without the remaining structural analogs (2-nitrophenol, 4-nitrophenol and phenol). After eluting with acetonitrile/acetic acid (9/1, v/v), 2,4-dinitrophenol in serum samples could be determined by using the fluorescence spectrometer, based on the fluorescence enhancement of fluorescein by the template molecule. Under the optimal conditions, the spiked recovery ranged from 95.8% to 103.4% and the detection limit was 1 nmol/L. The results confirmed the reliability and practicality of the protocol and revealed a good perspective of this method for biological sample analysis.
  • 加载中
    1. [1]

      [1] L. Phillips, M.A. Singer, Peripheral neuropathy due to dinitrophenol used for weight loss: something old, something new, Neurology 80 (2013) 773-774.

    2. [2]

      [2] J. Jiang, Z. Yuan, W. Huang, J. Wang, 2,4-Dinitrophenol poisoning caused by nonoral exposure, Toxicol. Ind. Health 27 (2011) 323-327.

    3. [3]

      [3] J. Grundlingh, P.I. Dargan, M. El-Zanfaly, D.M. Wood, 2,4-Dinitrophenol (DNP): a weight loss agent with significant acute toxicity and risk of death, J. Med. Toxicol. 7 (2011) 205-212.

    4. [4]

      [4] R. Loos, S. Tavazzi, B. Paracchini, E. Canuti, C. Weissteiner, Analysis of polar organic contaminants in surface water of the northern Adriatic Sea by solid-phase extraction followed by ultrahigh-pressure liquid chromatography-QTRAP(R) MS using a hybrid triple-quadrupole linear ion trap instrument, Anal. Bioanal. Chem. 405 (2013) 5875-5885.

    5. [5]

      [5] A. Rahimi, P. Hashemi, A. Badiei, P. Arab, A.R. Ghiasvand, CMK-3 nanoporous carbon as a new fiber coating for solid-phase microextraction coupled to gas chromatography-mass spectrometry, Anal. Chim. Acta 695 (2011) 58-62.

    6. [6]

      [6] Y. Liu, L.H. Zhu, Y.Y. Zhang, H.Q. Tang, Electrochemical sensoring of 2,4-dinitrophenol by using composites of graphene oxide with surface molecular imprinted polymer, Sens. Actuators B: Chem. 171-172 (2012) 1151-1158.

    7. [7]

      [7] Z.H. Wang, J.F. Xia, Q. Han, et al., Multi-walled carbon nanotube as a solid phase extraction adsorbent for analysis of indole-3-butyric acid and 1-naphthylacetic acid in plant samples, Chin. Chem. Lett. 24 (2013) 588-592.

    8. [8]

      [8] Z.H. Wang, J.F. Xia, F.Y. Zhao, et al., Determination of benzoic acid in milk by solidphase extraction and ion chromatography with conductivity detection, Chin. Chem. Lett. 24 (2013) 243-245.

    9. [9]

      [9] A. Namera, A. Takeuchi, T. Saito, et al., Sequential extraction of inorganic arsenic compounds and methyl arsenate in human urine using mixed-mode monolithic silica spin column coupled with gas chromatography-mass spectrometry, J. Sep. Sci. 35 (2012) 2506-2513.

    10. [10]

      [10] A. Nakamoto, M. Nishida, T. Saito, et al., Monolithic silica spin column extraction and simultaneous derivatization of amphetamines and 3,4-methylenedioxyamphetamines in human urine for gas chromatographic-mass spectrometric detection, Anal. Chim. Acta 661 (2010) 42-46.

    11. [11]

      [11] Y. Wang, T.X. Wei, Surface plasmon resonance sensor chips for the recognition of bovine serum albumin via electropolymerized molecularly imprinted polymers, Chin. Chem. Lett. 24 (2013) 813-816.

    12. [12]

      [12] Y.L. Wu, Y.S. Yan, J.M. Pan, et al., Fabrication and evaluation of molecularly imprinted regenerated cellulose composite membranes via atom transfer radical polymerization, Chin. Chem. Lett. 25 (2013) 273-278.

    13. [13]

      [13] T. Jing, H. Xia, J. Niu, et al., Determination of trace 2,4-dinitrophenol in surface water samples based on hydrophilic molecularly imprinted polymers/nickel fiber electrode, Biosens. Bioelectron. 26 (2011) 4450-4456.

    14. [14]

      [14] A. Mehdinia, M. Ahmadifar, M.O. Aziz-Zanjani, A. Jabbari, M.S. Hashtroudi, Selective adsorption of 2,4-dinitrophenol on molecularly imprinted nanocomposites of mesoporous silica SBA-15/polyaniline, Analyst 137 (2012) 4368-4374.

    15. [15]

      [15] A. Mehdinia, K.T. Baradaran, A. Jabbari, M.O. Aziz-Zanjani, E. Ziaei, Magnetic molecularly imprinted nanoparticles based on grafting polymerization for selective detection of 4-nitrophenol in aqueous samples, J. Chromatogr. A 1283 (2013) 82-88.

  • 加载中
    1. [1]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    2. [2]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    3. [3]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

    4. [4]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    5. [5]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    6. [6]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    7. [7]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    8. [8]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    9. [9]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    10. [10]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    11. [11]

      Gaojian YangZhiyang LiRabia UsmanZhu ChenYuan LiuSong LiHui ChenYan DengYile FangNongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930

    12. [12]

      Shu TianWenxin HuangJunrui HuHuiling WangZhipeng ZhangLiying XuJunrong LiYao Sun . Exploring the frontiers of plant health: Harnessing NIR fluorescence and surface-enhanced Raman scattering modalities for innovative detection. Chinese Chemical Letters, 2025, 36(3): 110336-. doi: 10.1016/j.cclet.2024.110336

    13. [13]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

    14. [14]

      Rui ChengXin HuangTingting ZhangJiazhuang GuoJian YuSu Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278

    15. [15]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    16. [16]

      Shuai Liang Wen-Jing Jiang Ji-Xiang Hu . Achieving colossal anisotropic thermal expansion via synergism of spin crossover and rhombus deformation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100430-100430. doi: 10.1016/j.cjsc.2024.100430

    17. [17]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    18. [18]

      Ruotong WeiAokun LiuJian KuangZhiwen WangLu YuChanglin Tian . Probing the dynamic properties in the LLPS process via site-directed spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy. Chinese Chemical Letters, 2025, 36(4): 110029-. doi: 10.1016/j.cclet.2024.110029

    19. [19]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    20. [20]

      Jia-Mei QinXue LiWei LangFu-Hao ZhangQian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925

Metrics
  • PDF Downloads(0)
  • Abstract views(699)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return