Citation: Gao-Feng Zha, Wei-Yun Xu, Peng Dai, Xiao-Yan Lai, Wei Liu, Yong-Cun Shen. A simple synthetic approach for the transformation of (S)-Ugi’s amine[J]. Chinese Chemical Letters, ;2014, 25(9): 1301-1304. doi: 10.1016/j.cclet.2014.06.009 shu

A simple synthetic approach for the transformation of (S)-Ugi’s amine

  • Corresponding author: Yong-Cun Shen, 
  • Received Date: 8 April 2014
    Available Online: 5 June 2014

    Fund Project: We are grateful for financial support from the National Natural Science Foundation of China (No. 20972123) (No. 20972123)

  • A simple synthetic approach for the transformation of (S)-Ugi's amine, another configuration of (R)-Ugi's amine, one of the most widely used intermediate in the preparation of chiral ferrocene-based ligands, has been developed via esterification using anhydride, alkaline hydrolysis and active manganese dioxide oxidation, and the corresponding ferrocenyl ketone was afforded in good yields.
  • 加载中
    1. [1]

      [1] (a) R.C.J. Atkinson, V.C. Gibson, N.J. Long, The syntheses and catalytic applications of unsymmetrical ferrocene ligands, Chem. Soc. Rev. 33 (2004) 313-328; (b) R.G. Arrayás, J. Adio, J.C. Carretero, Recent applications of chiral ferrocene ligands in asymmetric catalysis, Angew. Chem. Int. Ed. 45 (2006) 7674-7715; (c) J.C. Kizirian, Chiral tertiary diamines in asymmetric synthesis, Chem. Rev. 108 (2008) 140-205.

    2. [2]

      [2] N.W. Boaz, S.D. Debenham, E.B. Mackenzie, S.E. Large, Phosphinoferrocenylaminophosphines as novel and practical ligands for asymmetric catalysis, Org. Lett. 4 (2002) 2421-2424.

    3. [3]

      [3] A. Togni, C. Breutel, A. Schnyder, et al., A novel easily accessible chiral ferrocenyldiphosphine for highly enantioselective hydrogenation, allylic alkylation, and hydroboration reactions, J. Am. Chem. Soc. 116 (1994) 4062-4066.

    4. [4]

      [4] (a) T. Ireland, G. Grossheimann, C. Wieser-Jeunesse, P. Knochel, Ferrocenyl ligands with two phosphanyl substituents in the α,ω positions for the transition metal catalyzed asymmetric hydrogenation of functionalized double bonds, Angew. Chem. Int. Ed. 38 (1999) 3212-3215; (b) T. Ireland, K. Tappe, G. Grossheimann, P. Knochel, Synthesis of a new class of chiral 1,5-diphosphanylferrocene ligands and their use in enantioselective hydrogenation, Chem. Eur. J. 8 (2002) 843-852.

    5. [5]

      [5] T. Sturm, W. Weissensteiner, F. Spindler, A novel class of ferrocenyl-aryl-based diphosphine ligands for Rh-and Ru-catalysed enantioselective hydrogenation, Adv. Synth. Catal. 345 (2003) 160-164.

    6. [6]

      [6] (a) T. Hayashi, T. Mise, M. Fukushima, et al., Asymmetric synthesis catalyzed by chiral ferrocenylphosphine-transition metal complexes. I. Preparation of chiral ferrocenylphosphines, Bull. Chem. Soc. Jpn. 53 (1980) 1138-1151; (b) J.J.A. Perea, M. Lotz, P. Knochel, Synthesis and application of C2-symmetric diamino FERRIPHOS as ligands for enantioselective Rh-catalyzed preparation of chiral α-amino acids, Tetrahedron: Asymmetry 10 (1999) 375-384.

    7. [7]

      [7] (a) M. Lotz, T. Ireland, J.J.A. Perea, P. Knochel, Stereoselective substitution of α-aminoalkylferrocenes with diorganozincs. A fast synthesis of new chiral FERRIPHOS ligands for asymmetric catalysis, Tetrahedron: Asymmetry 10 (1999) 1839-1842; (b) J. Kang, J.H. Lee, J.B. Kim, G.J. Kim, Asymmetric modular synthesis of cylindrically chiral FerroPHOS ligands for the Rh-catalyzed asymmetric hydroboration, Chirality 12 (2000) 378-382.

    8. [8]

      [8] (a) P. Barbaro, A. Togni, A new chiral tridentate ferrocenyl ligand synthesis and characterization of its palladium (ii) and nickel (ii) complexes, Organometallics 14 (1995) 3570-3573; (b) L. Fadini, A. Togni, Ni (II) complexes containing chiral tridentate phosphines as new catalysts for the hydroamination of activated olefins, Chem. Commun. (2003) 30-31.

    9. [9]

      [9] R. Kuwano, K. Sato, T. Kurokawa, D. Karube, Y. Ito, Catalytic asymmetric hydrogenation of heteroaromatic compounds, indoles, J. Am. Chem. Soc. 122 (2000) 7614-7615.

    10. [10]

      [10] (a) D. Marquarding, H. Klusacek, G. Gokel, P. Hoffman, I. Ugi, Stereoselective syntheses. VI. Correlation of central and planar chirality in ferrocene derivatives, J. Am. Chem. Soc. 92 (1970) 5389-5393; (b) G.W. Gokel, D. Marquarding, I.K. Ugi, Stereoselective syntheses. VIII. Retentive nucleophilic displacements of alpha-substituted alkylferrocenes, J. Org. Chem. 37 (1972) 3052-3058.

    11. [11]

      [11] (a) H.C.L. Abbenhuis, U. Burchkhardt, V. GramLich, et al., A new stereoselective approach to chiral ferrocenyl ligands for asymmetric catalysis, Organometallics 13 (1994) 4481-4493; (b) H.C.L. Abbenhuis, U. Burchkhardt, V. GramLich, et al., Comparing chiral ferrocenyl and ruthenocenyl ligands: how subtle structural changes influence their performance in asymmetric catalysis, Organometallics 15 (1996) 1614-1621.

    12. [12]

      [12] T. Suzuka, M. Ogasawara, T. Hayashi, Asymmetric synthesis of metallocenes through enantioselective addition of organolithium reagents to 6-(dimethylamino) fulvene, J. Org. Chem. 67 (2002) 3355-3359.

    13. [13]

      [13] (a) W.S. Lam, S.H.L. Kok, T.T.L.A. Yeung, et al., An efficient approach to chiral ferrocene-based secondary alcohols via asymmetric hydrogenation of ferrocenyl ketones, Adv. Synth. Catal. 348 (2006) 370-374; (b) Y. Xu, S.L. Yu, Y.Y. Li, Z.R. Dong, J.X. Gao, Novel chiral C2-symmetric multidentate aminophosphine ligands for use in catalytic asymmetric reduction of ketones, Chin. Chem. Lett. 24 (2013) 527-530.

    14. [14]

      [14] (a) Y. Matsumoto, A. Ohno, S.J. Lu, T. Hayashi, Enantioselective synthesis of 1-metallocenylalkanols by catalytic asymmetric alkylation of metallocenecarboxaldehydes with dialkylzincs, Tetrahedron: Asymmetry 4 (1993) 1763-1766; (b) J. Wright, L. Frambes, P. Reeves, A simple route to chiral ferrocenyl alcohols, J. Organomet. Chem. 476 (1994) 215-217; (c) S. Hashiguchi, A. Fujii, K.L. Haack, et al., Kinetic resolution of racemic secondary alcohols by RuII-catalyzed hydrogen transfer, Angew. Chem. Int. Ed. 36 (1997) 288-290; (d) C. Bolm, K. Muñ iz, Catalytic enantioselective aryl transfer: asymmetric addition of diphenylzinc to aldehydes, Chem. Commun. (1999) 1295-1296; (e) Y. Nishibayashi, A. Yamauchi, G. Onodera, S. Uemura, Oxidative kinetic resolution of racemic alcohols catalyzed by chiral ferrocenyloxazolinylphosphine-ruthenium complexes, J. Org. Chem. 68 (2003) 5875-5880.

    15. [15]

      [15] W. Chen, W. Mbafor, S.M. Roberts, J. Whittall, A very simple, highly stereoselective and modular synthesis of ferrocene-based P-Chiral phosphine ligands, J. Am. Chem. Soc. 128 (2006) 3922-3923.

    16. [16]

      [16] G. Nicolosi, A. Patti, M. Piattelli, Lipase-mediated separation of the stereoisomers of 1-(1-hydroxyethyl)-2-(hydroxymethyl)ferrocene, J. Org. Chem. 59 (1994) 251-254.

    17. [17]

      [17] J. Attenburrow, A.F.B. Cameron, J.H. Chapman, et al., A synthesis of vitamin A from cyclohexanone, J. Chem. Soc. (1952) 1094-1111.

    18. [18]

      [18] P. Gogoi, G.K. Sarmah, D. Konwar, DMSO/N2H4 H2O/I2/H2O/CH3CN: a new system for selective oxidation of alcohols in hydrated media, J. Org. Chem. 69 (2004) 5153-5154.

    19. [19]

      [19] E.J. Corey, J.W. Suggs, Pyridinium chlorochromate. An efficient reagent for oxidation of primary and secondary alcohols to carbonyl compounds, Tetrahedron Lett. 16 (1975) 2647-2650.

  • 加载中
    1. [1]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    2. [2]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    3. [3]

      Shaojie DengPeihua MaQinghong BaiXin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878

    4. [4]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    5. [5]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    6. [6]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    7. [7]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    8. [8]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    9. [9]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    10. [10]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    11. [11]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    12. [12]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    13. [13]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    14. [14]

      Yin-Hang Chai Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322

    15. [15]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    16. [16]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    17. [17]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    18. [18]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    19. [19]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    20. [20]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

Metrics
  • PDF Downloads(0)
  • Abstract views(724)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return