Citation: Tian-Yu Xia, Yang-Bing Li, Zhao-Jun Yin, Xiang-Bao Meng, Shu-Chun Li, Zhong-Jun Li. Synthesis of L-glucose and L-galactose derivatives from D-sugars[J]. Chinese Chemical Letters, ;2014, 25(9): 1220-1224. doi: 10.1016/j.cclet.2014.06.007 shu

Synthesis of L-glucose and L-galactose derivatives from D-sugars

  • Corresponding author: Shu-Chun Li,  Zhong-Jun Li, 
  • Received Date: 15 April 2014
    Available Online: 3 June 2014

    Fund Project: This research was supported by the National Basic Research Program of China (973 Program, No. 2012CB822100) (973 Program, No. 2012CB822100) the National Key Technology R&D Program "New Drug Innovation" of China (No. 2012ZX09502001-001) (No. 2012ZX09502001-001)

  • An efficient route to prepare L-glucose and L-galactose is described. The L-sugars are achieved by using the strategy of switching the functional groups at C1 and C5 of D-glucose and D-mannose. The oxidation and reduction of the silyl enol ether at C1 and the lead(IV) tetraacetate mediated oxidative decarboxylation at C5 are the key steps. L-Glucose and L-galactose are prepared in a convenient and inexpensive way.
  • 加载中
    1. [1]

      [1] (a) M.M.L. Zulueta, Y.Q. Zhong, S.C. Hung, Synthesis of L-hexoses and their related biomolecules, Chem. Commun. 49 (2013) 3275-3287; (b) D. D'Alonzo, A. Guaragna, G. Palumbo, Recent advances in monosaccharide synthesis: a journey into L-hexose world, Curr. Org. Chem. 13 (2009) 71-98.

    2. [2]

      [2] Y.S. Li, K. Matsunaga, M. Ishibashi, Y. Ohizumi, Littoralisone, a novel neuritogenic iridolactone having an unprecedented heptacyclic skeleton including four-and nine-membered rings consisting of glucose from Verbena littoralis, J. Org. Chem. 66 (2001) 2165-2167.

    3. [3]

      [3] (a) Z.J. Segerman, B. Roy, S.M. Hecht, Characterization of bleomycin-mediated cleavage of a hairpin DNA library, Biochemistry 53 (2013) 5315-5327; (b) Z. Yu, R.M. Schmaltz, T.C. Bozeman, R. Paul, M.J. Rishel, Selective tumor cell targeting by the disaccharide moiety of Bleomycin, J. Am. Chem. Soc. 135 (2013) 2883-2886.

    4. [4]

      [4] T. Ogita, N. Otake, Y. Miyazaki, et al., The structure of adenomycin (C19-97 substance), Tetrahedron Lett. 21 (1980) 3203-3206.

    5. [5]

      [5] Y. Chen, R.N. Liang, W. Qin, Potentiometric sensor for sensitive and selective detection of heparin, Chin. Chem. Lett. 23 (2012) 233-236.

    6. [6]

      [6] (a) S. Arungundram, K. Al-Mafraji, J. Asong, et al., Modular synthesis of heparan sulfate oligosaccharides for structure-activity relationship studies, J. Am. Chem. Soc. 131 (2009) 17394-17405; (b) T. Polat, C.H. Wong, Anomeric reactivity-based one-pot synthesis of heparinlike oligosaccharides, J. Am. Chem. Soc. 129 (2007) 12795-12800; (c) U. Lindahl, Heparan sulfate -a polyanion with multiple messages, Pure Appl. Chem. 69 (1997) 1897-1902; (d) D.L. Rabenstein, Heparin and heparan sulfate: structure and function, Nat. Prod. Rep. 19 (2002) 312-331.

    7. [7]

      [7] (a) P.E. Jansson, B. Lindbery, G. Widmalm, P.A. Sandford, Structural studies of an extracellular polysaccharide (S-130) elaborated by Alcaligenes ATCC 31555, Carbohydr. Res. 139 (1985) 217-223; (b) P.E. Jansson, N.S. Kumar, B. Lindbery, Structural studies of a polysaccharide (S-88) elaborated by Pseudomonas ATCC 31554, Carbohydr. Res. 156 (1986) 165-172; (c) T.A. Chowdhury, B. Lindbery, U. Lindquist, J. Baird, Structural studies of an extracellular polysaccharide (S-198) elaborated by Alcaligenes ATCC 31853, Carbohydr. Res. 161 (1987) 127-132.

    8. [8]

      [8] (a) W. Kubelka, B. Kop, K. Jentzsch, H. Ruis, Zur biogenese von strophanthidinglykosiden: convallatoxol als vorstufe von convallatoxin in Convallaria majalis, Phytochemistry 13 (1974) 1805-1808; (b) S. Esaki, A. Ohishi, A. Katsumata, N. Sugiyama, S. Kamiya, Synthesis of α-LMannopyranosyl-containing disaccharides and phenols as substrates for the α-L-Mannosidase activity of commercial naringinase, Biosci. Biotechnol. Biochem. 57 (1993) 2099-2103.

    9. [9]

      [9] (a) M. Takeuchi, T. Taniguchi, K. Ogasawara, Integrated route to the L-aldohexoses using a common man-made chiral building block, Chirality 12 (2000) 338-341; (b) M. Honzumi, T. Taniguchi, K. Ogasawara, A new convergent route to aldohexoses from a common chiral building block, Org. Lett. 3 (2001) 1355-1358; (c) L. Ermolenko, N.A. Sasaki, Diastereoselective synthesis of all eight L-hexoses from L-ascorbic acid, J. Org. Chem. 71 (2006) 693-703; (d) J.M. Harris, M.D. Keranen, G.A. O'Doherty, Syntheses of D-and L-mannose, gulose, and talose via diastereoselective and enantioselective dihydroxylation reactions, J. Org. Chem. 64 (1999) 2982-2983; (e) J.M. Harris, M.D. Keränen, H. Nguyen, V.G. Young, G.A. O'Doherty, Syntheses of four D-and L-hexoses via diastereoselective and enantioselective dihydroxylation reactions, Carbohydr. Res. 328 (2000) 17-36; (f) M.M. Ahmed, G.A. O'Doherty, De novo asymmetric syntheses of D-and L-talose via an iterative dihydroxylation of dienoates, J. Org. Chem. 70 (2005) 10576-10578; (g) W. Du, Y. Hu, Asymmetric synthesis of methyl 6-deoxy-3-O-methyl-α-L-mannopyranoside from a non-carbohydrate precursor, Carbohydr. Res. 341 (2006) 725-729; (h) A.B. Northrup, D.W.C. MacMillan, Two-step synthesis of carbohydrates by selective aldol reactions, Science 305 (2004) 1752-1755; (i) J.Mlynarski, B. Gut, Organocatalytic synthesis of carbohydrates, Chem. Soc. Rev. 41 (2012) 587-596.

    10. [10]

      [10] (a) A. Guaragna, C. Napolitano, D. D'Alonzo, S. Pedatella, G. Palumbo, A versatile route to L-hexoses: synthesis of L-mannose and L-altrose, Org. Lett. 8 (2006) 4863-4866; (b) A. Guaragna, D. D'Alonzo, C. Paolella, C. Napolitano, G. Palumbo, Highly stereoselective de novo synthesis of L-hexoses, J. Org. Chem. 75 (2010) 3558-3568; (c) L. Ermolenko, N.A. Sasaki, P. Potier, Novel route to L-hexoses from L-ascorbic acid: asymmetric synthesis of L-galactopyranose and L-talopyranose preliminary communication, Helv. Chim. Acta 86 (2003) 3578-3582; (d) A. Dondoni, A. Marra, A. Massi, Carbohydrate homologation by the use of 2-(trimethylsilyl)thiazole. Preparative scale synthesis of rare sugars: L-gulose, L-idose, and the disaccharide subunit of Bleomycin A2, J. Org. Chem. 62 (1997) 6261-6267; (e) T.G. Frihed, M. Heuckendorff, C.M. Pedersen, M. Bols, Easy access to L-mannosides and L-galactosides by using C-H activation of the corresponding 6-deoxysugars, Angew. Chem. Int. Ed. 51 (2012) 12285-12288.

    11. [11]

      [11] (a) J.C. Lee, S.W. Chang, C.C. Liao, et al., From D-glucose to biologically potent Lhexose derivatives: synthesis of α-L-iduronidase fluorogenic detector and the disaccharide moieties of Bleomycin A2 and heparan sulfate, Chem. Eur. J. 10 (2004) 399-415; (b) H. Takahashi, Y. Hitomi, Y. Iwai, S. Ikegami, A novel and practical synthesis of L-hexoses from D-glycono-1,5-lactones, J. Am. Chem. Soc. 122 (2000) 2995-3000; (c) H. Takahashi, T. Shida, Y. Hitomi, et al., Divergent synthesis of L-sugars and L-iminosugars from D-sugars, Chem. Eur. J. 12 (2006) 5868-5877; (d) F.P. Boulineau, A. Wei, Synthesis of L-sugars from 4-deoxypentenosides, Org. Lett. 4 (2002) 2281-2283; (e) F.P. Boulineau, A. Wei, Conversion of D-glucals into L-glycals and mirror-image carbohydrates, Org. Lett. 6 (2004) 119-121; (f) G. Cheng, R. Fan, J.M. Hernández-Torres, F.P. Boulineau, A.Wei, Syn additions to 4a-epoxypyranosides: synthesis of L-idopyranosides, Org. Lett. 9 (2007) 4849-4852; (g) A.C.Weymouth-Wilson, R.A. Clarkson, N.A. Jones, et al., Large scale synthesis of the acetonides of L-glucuronolactone and of L-glucose: easy access to L-sugar chirons, Tetrahedron Lett. 50 (2009) 6307-6310.

    12. [12]

      [12] (a) K. Izumori, A strategy for bioproduction of all hexoses, J. Biotechnol. 124 (2006) 717-722; (b) S.M. Dean, W.A. Greenberg, C.H. Wong, Recent advances in aldolase-catalyzed asymmetric synthesis, Adv. Synth. Catal. 349 (2007) 1308-1320.

    13. [13]

      [13] Y. Li, Z. Yin, B. Wang, X.B. Meng, Z.J. Li, Synthesis of orthogonally protected L-glucose, L-mannose, and L-galactose from D-glucose, Tetrahedron 68 (2012) 6981-6989.

    14. [14]

      [14] W.B. Yang, S.S. Patil, C.H. Tsai, C.H. Lin, J.M. Fang, The synthesis of L-gulose and L-xylose from D-gluconolactone, Tetrahedron 58 (2002) 253-259.

    15. [15]

      [15] B. Doboszewski, P. Herdewijn, 1,2,3,4-Di-O-isopropylidene-L-galactose synthesis from its D-enantiomer, Tetrahedron Lett. 53 (2012) 2253-2256.

    16. [16]

      [16] R.F. Martínez, Z.L. Liu, A.F.G. Glawar, et al., Short and sweet: D-glucose to L-glucose and L-glucuronic acid, Angew. Chem. Int. Ed. 53 (2014) 1160-1162.

    17. [17]

      [17] F. Rodrigues, Y. Canac, A. Lubineau, A convenient, one-step, synthesis of β-Cglycosidic ketones in aqueous media, Chem. Commun. 20 (2000) 2049-2050.

    18. [18]

      [18] S. Norsikian, J. Zeitouni, S. Rat, S. Gérard, A. Lubineau, New and general synthesis of β-C-glycosylformaldehydes from easily available β-C-glycosylpropanones, Carbohydr. Res. 342 (2007) 2716-2728.

    19. [19]

      [19] R.A. Sheldon, J.K. Kochi, Oxidative decarboxylation of acids by lead tetraacetate, Org. React. 19 (1972) 279-421.

  • 加载中
    1. [1]

      Yang FengYang-Qing TianYong-Qiang ZhaoSheng-Jun ChenBi-Feng Yuan . Dynamic deformylation of 5-formylcytosine and decarboxylation of 5-carboxylcytosine during differentiation of mouse embryonic stem cells into mouse neurons. Chinese Chemical Letters, 2024, 35(11): 109656-. doi: 10.1016/j.cclet.2024.109656

    2. [2]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    3. [3]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    4. [4]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    5. [5]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    6. [6]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    7. [7]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

    8. [8]

      Mengxing LiuJing LiuHongxing ZhangJianan TaoPeiwen FanXin LvWei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994

    9. [9]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    10. [10]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    11. [11]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    12. [12]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    13. [13]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    14. [14]

      Gu GongMengzhu LiNing SunTing ZhiYuhao HeJunan PanYuntao CaiLonglu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705

    15. [15]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    16. [16]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    17. [17]

      Huangjie Lu Yingzhe Du Peng Lin Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344

    18. [18]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    19. [19]

      Qinwei LuJinjie LuJuying LeiXubiao LuoYanbo Zhou . Cyclodextrin-boosted photocatalytic oxidation for efficient bisphenol A removal. Chinese Chemical Letters, 2025, 36(3): 110017-. doi: 10.1016/j.cclet.2024.110017

    20. [20]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

Metrics
  • PDF Downloads(0)
  • Abstract views(750)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return