Citation:
K. Kesavan, Chithra M. Mathew, S. Rajendran. Lithium ion conduction and ion-polymer interaction in poly(vinyl pyrrolidone) based electrolytes blended with different plasticizers[J]. Chinese Chemical Letters,
;2014, 25(11): 1428-1434.
doi:
10.1016/j.cclet.2014.06.005
-
Poly(ethylene oxide), poly(vinyl pyrrolidone) (PEO/PVP), lithium perchlorate salt (LiClO4) and different plasticizer based, gel polymer electrolytes were prepared by the solvent casting technique. XRD results show that the crystallinity decreases with the addition of different plasticizers. Consequently, there is an enhancement in the amorphousity of the samples responsible for the process of ion transport. FTIR spectroscopy is used to characterize the structure of the polymer and confirms the complexation of plasticizer with host polymer matrix. The ionic conductivity has been calculated using the bulk impedance obtained through impedance spectroscopy. Among the various plasticizers, the ethylene carbonate (EC) based complex exhibits a maximum ionic conductivity value of the order of 2.7279×10-4 S cm-1. Thermal stability of the prepared electrolyte films shows that they can be used in batteries at elevated temperatures. PEO (72%)/PVP (8%)/LiClO4 (8%)/EC (12%) has the maximum ionic conductivity value which is supported by the lowest optical band gap and lowest intensity in photoluminescence spectroscopy near 400-450 nm. Two and three dimensional topographic images of the sample having a maximum ionic conductivity show the presence of micropores.
-
-
-
[1]
[1] L.A. Utracki, Polymer Alloys and Blends, FRG, Carl Hanser, Munich, 1990.
-
[2]
[2] S. Zulfiqar, S. Ahmad, Thermal degradation of blends of PVC with polysiloxane-1, Polym. Degr. Stab. 65 (1999) 243-247.
-
[3]
[3] D. Saika, Y.M. Chen-Yang, Y.T. Chen, Y.K. Li, S.I. Li, Investigation of ionic conductivity of composite gel polymer electrolyte membranes based on P(VDF-HFP), LiClO4 and silica aerogel for lithium ion battery, Desalination 234 (2008) 24-32.
-
[4]
[4] V.D. Noto, M. Bettinelli, M. Furiani, S. Lavina, M. Vidal, Conductivity, luminescence and vibrational studies of the poly(ethylene glycol) 400 electrolyte based on europium trichloride, Macromol. Chem. Phys. 197 (1996) 375-388.
-
[5]
[5] C.M. Burba, R. Frech, Spectroscopic measurements of ionic association in solutions of LiPF6, J. Phys. Chem. B 109 (2005) 15161-15164.
-
[6]
[6] R. Frech, S. Chintapalli, Effect of propylene carbonate as a plasticizer in high molecular weight PEO LiCF3SO3 electrolytes, Solid State Ionics 85 (1995) 61-66.
-
[7]
[7] Z. Stoeva, I.M. Litas, E. Staunton, Y.G. Andreev, P.G. Bruce, Ionic conductivity in the crystalline polymer electrolytes PEO6:LiXF6, X=P, As, Sb, J. Am. Chem. Soc. 125 (2003) 4619-4626.
-
[8]
[8] K. KiranKumar, M. Ravi, Y. Pavani, et al., Investigations on the effect of complexation of NaF salt with polymer blend (PEO/PVP) electrolytes on ionic conductivity and optical energy band gaps, Physica B 406 (2011) 1706-1712.
-
[9]
[9] C.V.S. Reddy, X. Han, Q.Y. Zhu, L.Q. Mai, W. Chen, Dielectric spectroscopy studies on (PVP + PVA) polyblend film, Microelectron. Eng. 83 (2006) 281-285.
-
[10]
[10] A. Kumar, D. Sakia, F. Singh, D.K. Avasthi, Ionic conduction in 70 MeV C5+ ionirradiated P(VDF-HFP)-(PC + DEC)-LiCF3SO3 gel polymer electrolyte system, Solid State Ionics 176 (2005) 1585-1590.
-
[11]
[11] G.K. Prajapati, R. Roshan, P.N. Gupta, Effect of plasticizer on ionic transport and dielectric properties of PVA-H3PO4 proton conducting polymeric electrolytes, J. Phys. Chem. Solids 71 (2010) 1717-1723.
-
[12]
[12] B.L. Papke, M.A. Ratner, D.F. Shriver, Vibrational spectroscopic determination of structure and ion pairing in complexes of poly (ethylene oxide) with Lithium salts, J. Electrochem. Soc. 129 (1982) 1434-1438.
-
[13]
[13] S. Intarakamhang, Preparation, Characterization and Molecular Modeling of Poly (Ethylene oxide)/Poly (Vinyl Pyrrolidone) Montmorillonite Nano-Composite Solid Electrolytes, 2005, p. 54.
-
[14]
[14] C.V. Subba Reddy, A.P. Ji, Q.Y. Zhu, L.Q. Mai, W. Chen, Preparation and characterization of (PVP + NaClO4) electrolytes for battery applications, Eur. Phys. J. E 19 (2006) 471-476.
-
[15]
[15] C.S. Ramya, S. Selvasekarapandian, T. Savitha, G. Hirankumar, P.C. Angelo, Vibrational and impedance spectroscopic study on PVP-NH4SCN based polymer electrolytes, Physica B 393 (2007) 11-17.
-
[16]
[16] N. Vijaya, S. Selvasekarapandian, S. Karthikeyan, et al., Synthesis and characterization of proton conducting polymer electrolyte based on poly(N-vinyl pyrrolidone), J. Appl. Sci. 127 (2013) 1538-1543.
-
[17]
[17] A.M. Stephan, R. Thirunakaran, N.G. Renganathan, et al., A study on polymer blend electrolyte based on PVC/PMMA with lithium salt, J. Power Sources 81 (1999) 752-758.
-
[18]
[18] S. Rajendran, M.R. Prabhu, Effect of different plasticizer on structural and electrical properties of PEMA-based polymer electrolytes, J. Appl. Electrochem. 40 (2010) 327-332.
-
[19]
[19] M. Watanabe, N. Ogata, J.R. MacCullum, C.A. Vincent, Polymer Electrolyte Review, vol. 1, Elsevier, New York, 1987.
-
[20]
[20] J.Y. Song, Y.Y. Wang, C.C. Wan, Preparation and characterization of poly(vinyl chloride-co-vinyl acetate)-based gel electrolytes for Li-ion batteries, J. Electrochem. Soc. 145 (1998) 1207-1211.
-
[21]
[21] K.M. Abraham, M. Alamgir, D.K. Hoffman, Polymer electrolytes reinforced by Celgard1 membranes, J. Electrochem. Soc. 142 (1995) 683-687.
-
[22]
[22] M.B. Armand, J.M. Chabagno, J.M. Duclot, et al., Fast-Ion Transport in Solids, North-Holland, Amsterdam, 1979.
-
[23]
[23] T. Miyamoto, K. Shibayama, Free-volume model for ionic conductivity in polymers, J. Appl. Phys. 44 (1973) 5372-5376.
-
[24]
[24] H.F. Mark, Encyclopedia of Polymer Science and Engineering, vol. 1, Wiley Interscience Publication, John Wiley &Sons, New York, 1964.
-
[25]
[25] M. Ulaganathan, S. Rajendran, Li ion conduction on plasticizer-added PVAc-based hybrid polymer electrolytes, Ionics 16 (2010) 667-672.
-
[26]
[26] S. Rajendran, M. Sivakumar, R. Subadevi, Investigations on the effect of various plasticizers in PVA-PMMA solid polymer blend electrolytes, Mater. Lett. 58 (2004) 641-649.
-
[27]
[27] Y. Wang, X. Ma, Q. Zhang, N. Tian, Synthesis and properties of gel polymer electrolyte membranes based on novel comb-like methyl methacrylate copolymers, J. Membr. Sci. 349 (2010) 279-286.
-
[28]
[28] M.M. Nasef, H. Saidi, Structural, thermal and ion transport properties of radiation grafted lithium conductive polymer electrolytes, Mater. Chem. Phys. 99 (2006) 361-369.
-
[29]
[29] E.M. Abdelrazk, Spectroscopic studies on the effect of dopingwith CoBr2 and MgCl2 on some physical properties of polyvinylalcohol films, Physica B 403 (2008) 2137-2142.
-
[30]
[30] N.R. Rao, Ultraviolet and Visible Spectroscopy: Chemical Applications, Butterworth, London, 1967.
-
[31]
[31] G.M. Thutupalli, G. Tomlin, The optical properties of thin films of cadmium and zinc selenides and tellurides, J. Phys. D: Appl. Phys. 9 (1976) 1639-1646.
-
[32]
[32] D.S. Davis, T.S. Shalliday, Some optical properties of cadmium telluride, Phys. Rev. 118 (1960) 1020-1022.
-
[33]
[33] V. Raja, A.K. Sarma, V.V.R. Narasimha Rao, Optical properties of pure and doped PMMA-CO-P4VPNO polymer films, Mater. Lett. 57 (2003) 4678-4683.
-
[34]
[34] U.S. Park, Y.J. Hong, M.S. Oh, Fluorescence spectroscopy for local viscosity measurements in polyacrylonitrile (pan)-based polymer gel electrolytes, Electrochim. Acta 41 (1996) 849-855.
-
[35]
[35] V. Aravindan, P. Vickraman, T. Premkumar, Polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP)-based composite polymer electrolyte containing LiPF3(CF3CF2)3, J. Non-Cryst. Solids 354 (2008) 3451-3457.
-
[36]
[36] M. Ulaganathan, S. Rajendran, Studies on MWCNT-incorporated composite polymer electrolytes for electrochemical applications, Soft Mater. 8 (2010) 358-369.
-
[37]
[37] M. Ulaganathan, S. Sundar Pethaiah, S. Rajendran, Li-ion conduction in PVAc based polymer blend electrolytes for lithium battery applications, Mater. Chem. Phys. 129 (2011) 471-476.
-
[1]
-
-
-
[1]
Hao Jiang , Yuan-Yuan He , Hai-Chao Liang , Meng-Jia Shang , Han-Han Lu , Chun-Hua Liu , Yin-Shan Meng , Tao Liu , Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354
-
[2]
Chun-Yun Ding , Ru-Yuan Zhang , Yu-Wu Zhong , Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393
-
[3]
Pan Liu , Yanming Sun , Alberto J. Fernández-Carrión , Bowen Zhang , Hui Fu , Lunhua He , Xing Ming , Congling Yin , Xiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641
-
[4]
Yan Cheng , Hua-Peng Ruan , Yan Peng , Longhe Li , Zhenqiang Xie , Lang Liu , Shiyong Zhang , Hengyun Ye , Zhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554
-
[5]
Yunan Yuan , Zhimin Luo , Jie Chen , Chaoliang He , Kai Hao , Huayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549
-
[6]
Xiangshuai Li , Jian Zhao , Li Luo , Zhuohao Jiao , Ying Shi , Shengli Hou , Bin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407
-
[7]
Zhu Shu , Xin Lei , Yeye Ai , Ke Shao , Jianliang Shen , Zhegang Huang , Yongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585
-
[8]
Pengfei Li , Chulin Qu , Fan Wu , Hu Gao , Chengyan Zhao , Yue Zhao , Zhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292
-
[9]
Wen-Jun Xia , Yong-Jiang Wang , Yun-Fei Cao , Cai Sun , Xin-Xiong Li , Yan-Qiong Sun , Shou-Tian Zheng . A luminescent folded S-shaped high-nuclearity Eu19-oxo-cluster embedded polyoxoniobate for information encryption. Chinese Chemical Letters, 2025, 36(2): 110248-. doi: 10.1016/j.cclet.2024.110248
-
[10]
Wei Li , Guoqiang Feng , Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060
-
[11]
Gaofeng WANG , Shuwen SUN , Yanfei ZHAO , Lixin MENG , Bohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479
-
[12]
Yan-Jiang Li , Shu-Lei Chou , Yao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389
-
[13]
Jingqi Ma , Huangjie Lu , Junpu Yang , Liangwei Yang , Jian-Qiang Wang , Xianlong Du , Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275
-
[14]
Xin Dong , Jing Liang , Zhijin Xu , Huajie Wu , Lei Wang , Shihai You , Junhua Luo , Lina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708
-
[15]
Xiuwen Xu , Quan Zhou , Yacong Wang , Yunjie He , Qiang Wang , Yuan Wang , Bing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272
-
[16]
Shuwen SUN , Gaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368
-
[17]
Xiaxia LIU , Xiaofang MA , Luxia GUO , Xianda HAN , Sisi FENG . Structure and magnetic properties of Mn(Ⅱ) coordination polymers regulated by N-auxiliary ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 587-596. doi: 10.11862/CJIC.20240269
-
[18]
Hong-Jin Liao , Zhu Zhuo , Qing Li , Yoshihito Shiota , Jonathan P. Hill , Katsuhiko Ariga , Zi-Xiu Lu , Lu-Yao Liu , Zi-Ang Nan , Wei Wang , You-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052
-
[19]
Xuying Yu , Jiarong Mi , Yulan Han , Cai Sun , Mingsheng Wang , Guocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233
-
[20]
Xin Dong , Tianqi Chen , Jing Liang , Lei Wang , Huajie Wu , Zhijin Xu , Junhua Luo , Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(708)
- HTML views(2)