Citation:
Bao-He Wang, Jin-Shi Dong, Shuang Chen, Li-Li Wang, Jing Zhu. ZnCl2-modified ion exchange resin as an efficient catalyst for the bisphenol-A production[J]. Chinese Chemical Letters,
;2014, 25(11): 1423-1427.
doi:
10.1016/j.cclet.2014.06.004
-
A ZnCl2-modified ion exchange resin as the catalyst for bisphenol-A synthesis was prepared by the ion exchange method. Scanning electron microscope (SEM), Fourier transform infrared spectrophotometer (FT-IR), thermo gravimetric analyzer (TGA) and pyridine adsorbed IR were employed to characterize the catalyst. As a result, the modified catalyst showed high acidity and good thermal stability. Zn2+ coordinated with a sulfonic acid group to form a stable active site, which effectively decreased the deactivation caused by the degradation of sulfonic acid. Thus the prepared catalyst exhibited excellent catalytic activity, selectivity and stability compared to the unmodified counterpart.
-
Keywords:
- Zinc chloride,
- Ion exchange resin,
- Modification,
- Bisphenol-A
-
-
-
[1]
[1] Y. Ide, N. Kagawa, M. Itakura, et al., Effective and selective bisphenol A synthesis on a layered silicate with spatially arranged sulfonic acid, ACS Appl. Mater. Int. 4 (2012) 2186-2191.
-
[2]
[2] D. Das, J.F. Lee, S. Cheng, Sulfonic acid functionalized mesoporous MCM-41 silica as a convenient catalyst for bisphenol-A synthesis, Chem. Commun. 6 (2001) 2178-2179.
-
[3]
[3] D. Das, Selective synthesis of bisphenol-A over mesoporous MCM silica catalysts functionalized with sulfonic acid groups, J. Catal. 223 (2004) 152-160.
-
[4]
[4] W. Kaleta, K. Nowiń ska, Immobilisation of heteropoly anions in Si-MCM-41 channels by means of chemical bonding to aminosilane groups, Chem. Commun. 6 (2001) 535-536.
-
[5]
[5] K. Nowiń ska, W. Kaleta, Synthesis of bisphenol-A over heteropoly compounds encapsulated into mesoporous molecular sieves, Appl. Catal. A 203 (2000) 91- 100.
-
[6]
[6] K. Shimizu, S. Kontani, S. Yamada, et al., Design of active centers for bisphenol-A synthesis by organic-inorganic dual modification of heteropolyacid, Appl. Catal. A 380 (2010) 33-39.
-
[7]
[7] G.D. Yadav, N. Kirthivasan, Synthesis of bisphenol-A: comparison of efficacy of ion exchange resin catalysts vis-à -vis heteropolyacid supported on clay and kinetic modelling, Appl. Catal. A 154 (1997) 29-53.
-
[8]
[8] A. Singh, Preparation of bisphenol-A over zeolite catalysts, Catal. Lett. 16 (1992) 431-435.
-
[9]
[9] B.S. Zheng, Present station of BPA at home and abroad and suggestions on development of China's BPA, Fine Spec. Chem. 12 (2001) 7-10.
-
[10]
[10] R.B. Wagner, A-preparation using ion exchange resin containing mercatpo and sulfic acid groups, US Patent 3 172 916 (1965).
-
[11]
[11] N.A. Francis, B.C. Louis, Cationic exchange polymeric resin, US Patent 3 153 001 (1964).
-
[12]
[12] B. Wang, H. Sun, J. Zhu, L. Wang, S. Chen, Bis(2-mercapto-ethyl) amine modification of macroporous sulfonic tesin catalyst in bisphenol-A synthesis, AIChE J. 59 (2013) 3816-3823.
-
[13]
[13] B.B. Gammill, G.R. Ladewig, G.E. Ham, Ion exchange catalyst for the preparation of bisphenols, US Patent 3 760 006 (1973).
-
[14]
[14] S. Takahim, S. Toshitaka, Ion exchange resin, JP Patent 8 089 819 (1996).
-
[15]
[15] B. Carvill, K. Glasgow, G. Kishan, Process for the synthesis of bisphenol, US Patent 0 116 751A (2004).
-
[16]
[16] T. Terajima, T. Takai, H. Nakamura, Modified ion exchange resin and process for producing bisphenols, US Patent 0 224 315A1 (2011).
-
[17]
[17] B. Schmid, M. Dö ker, J. Gmehling, Esterification of ethylene glycol with acetic acid catalyzed by amberlyst 36, Indust. Eng. Chem. Res. 47 (2008) 698-703.
-
[18]
[18] M. Kim, S. Salley, K. Ng, Transesterification of glycerides using a heterogeneous resin catalyst combined with a homogeneous catalyst, Energy Fuels 22 (2008) 3594-3599.
-
[19]
[19] M. Granollers, J. Izquierdo, F. Cunill, Effect of macroreticular acidic ion-exchange resins on 2-methyl-1-butene and 2-methyl-2-butene mixture oligomerization, Appl. Catal. A 435-436 (2012) 163-171.
-
[20]
[20] V. Magnotta, B. Gates, Superacid polymers: synthesis and analysis of AlCl3- sulfonic acid resin complexes, J. Polym. Sci. 15 (1977) 1341-1347.
-
[21]
[21] J. Penzien, C. Haeßner, A. Jentys, et al., Heterogeneous catalysts for hydroamination reactions: structure-activity relationship, J. Catal. 221 (2004) 302-312.
-
[22]
[22] K. Shimizu, H. Furukawa, N. Kobayashi, Y. Itaya, A. Satsuma, Effects of Brønsted and Lewis acidities on activity and selectivity of heteropolyacid-based catalysts for hydrolysis of cellobiose and cellulose, Green Chem. 11 (2009) 1627-1632.
-
[23]
[23] W. Shi, J. Zhao, X. Yuan, et al., Effects of Brønsted and Lewis acidities on catalytic activity of heteropolyacids in transesterification and esterification reactions, Chem. Eng. Technol. 35 (2012) 347-352.
-
[24]
[24] H. Yamamoto, From designer Lewis acid to designer Brønsted acid towards more reactive and selective acid catalysis, Proc. Jpn. Acad. Ser. B: Phys. Biol. Sci. 84 (2008) 134-146.
-
[25]
[25] M.L. Honkela, A. Root, M. Lindblad, A.O.I. Krause, Comparison of ion-exchange resin catalysts in the dimerisation of isobutene, Appl. Catal. A 295 (2005) 216- 223.
-
[26]
[26] F. Coutinho, R.R. Souza, A.S. Gomes, Synthesis, characterization and evaluation of sulfonic resins as catalysts, Eur. Polym. J. 40 (2004) 1525-1532.
-
[27]
[27] L.X. Mao, The preparation of cyclohexene by dehydration of cyclohexanol on Ti4+ modificatory cation exchange resin catalyst, Ion Exch. Adsor. 20 (2004) 562-568.
-
[28]
[28] F. Zhang, X. Jiang, J. Hong, H. Lou, X. Zheng, Preparation of ZnCl2-modified ion exchange resin and its catalytic activity for esterification of ethanol and acetic acid under microwave, Chin. J. Catal. 31 (2010) 666-670.
-
[29]
[29] N. Bothe, F. Dö scher, J. Klein, H. Widdecke, Thermal stability of sulphonated styrene-divinylbenzene resins, Polymer 20 (1979) 850-854.
-
[30]
[30] Y. Feng, F. Zhang, Ionic electronegativity, J. Dallan Inst. Light Ind. 17 (1998) 70-76.
-
[1]
-
-
-
[1]
Jianhui Yin , Wenjing Huang , Changyong Guo , Chao Liu , Fei Gao , Honggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244
-
[2]
Haojie Song , Laiyu Luo , Siyu Wang , Guo Zhang , Baojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347
-
[3]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[4]
Yun-Xin Huang , Lin-Qian Yu , Ke-Yu Chen , Hao Wang , Shou-Yan Zhao , Bao-Cheng Huang , Ren-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437
-
[5]
Yue Pan , Wenping Si , Yahao Li , Haotian Tan , Ji Liang , Feng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877
-
[6]
Yunfa Dong , Shijie Zhong , Yuhui He , Zhezhi Liu , Shengyu Zhou , Qun Li , Yashuai Pang , Haodong Xie , Yuanpeng Ji , Yuanpeng Liu , Jiecai Han , Weidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261
-
[7]
Yue Wang , Caixia Xu , Xingtao Tian , Siyu Wang , Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167
-
[8]
Yang LIU , Lijun WANG , Hongyu WANG , Zhidong CHEN , Lin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015
-
[9]
Yunyu Zhao , Chuntao Yang , Yingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865
-
[10]
Wenbi Wu , Yinchu Dong , Haofan Liu , Xuebing Jiang , Li Li , Yi Zhang , Maling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260
-
[11]
Yang Li , Xiaoxu Liu , Tianyi Ji , Man Zhang , Xueru Yan , Mengjie Yao , Dawei Sheng , Shaodong Li , Peipei Ren , Zexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551
-
[12]
Jie Zhou , Quanyu Li , Xiaomeng Hu , Weifeng Wei , Xiaobo Ji , Guichao Kuang , Liangjun Zhou , Libao Chen , Yuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143
-
[13]
Jiayu Bai , Songjie Hu , Lirong Feng , Xinhui Jin , Dong Wang , Kai Zhang , Xiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326
-
[14]
Ningning Zhao , Yuyan Liang , Wenjie Huo , Xinyan Zhu , Zhangxing He , Zekun Zhang , Youtuo Zhang , Xianwen Wu , Lei Dai , Jing Zhu , Ling Wang , Qiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332
-
[15]
Lingjiang Kou , Yong Wang , Jiajia Song , Taotao Ai , Wenhu Li , Mohammad Yeganeh Ghotbi , Panya Wattanapaphawong , Koji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368
-
[16]
Chengmin Hu , Pingxuan Liu , Ziyang Song , Yaokang Lv , Hui Duan , Li Xie , Ling Miao , Mingxian Liu , Lihua Gan . Tailor-made overstable 3D carbon superstructures towards efficient zinc-ion storage. Chinese Chemical Letters, 2025, 36(4): 110381-. doi: 10.1016/j.cclet.2024.110381
-
[17]
Zhixiao Xiong , Shanni Qiu , Yuyu Wang , Houna Duan , Yi Xiao , Yufang Xu , Weiping Zhu , Xuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002
-
[18]
Lijun Mao , Shuo Li , Xin Zhang , Zhan-Ting Li , Da Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363
-
[19]
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
-
[20]
Chenghao Ge , Peng Wang , Pei Yuan , Tai Wu , Rongjun Zhao , Rong Huang , Lin Xie , Yong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(687)
- HTML views(17)