Citation: Bao-He Wang, Jin-Shi Dong, Shuang Chen, Li-Li Wang, Jing Zhu. ZnCl2-modified ion exchange resin as an efficient catalyst for the bisphenol-A production[J]. Chinese Chemical Letters, ;2014, 25(11): 1423-1427. doi: 10.1016/j.cclet.2014.06.004 shu

ZnCl2-modified ion exchange resin as an efficient catalyst for the bisphenol-A production

  • Corresponding author: Jing Zhu, 
  • Received Date: 1 April 2014
    Available Online: 29 May 2014

  • A ZnCl2-modified ion exchange resin as the catalyst for bisphenol-A synthesis was prepared by the ion exchange method. Scanning electron microscope (SEM), Fourier transform infrared spectrophotometer (FT-IR), thermo gravimetric analyzer (TGA) and pyridine adsorbed IR were employed to characterize the catalyst. As a result, the modified catalyst showed high acidity and good thermal stability. Zn2+ coordinated with a sulfonic acid group to form a stable active site, which effectively decreased the deactivation caused by the degradation of sulfonic acid. Thus the prepared catalyst exhibited excellent catalytic activity, selectivity and stability compared to the unmodified counterpart.
  • 加载中
    1. [1]

      [1] Y. Ide, N. Kagawa, M. Itakura, et al., Effective and selective bisphenol A synthesis on a layered silicate with spatially arranged sulfonic acid, ACS Appl. Mater. Int. 4 (2012) 2186-2191.

    2. [2]

      [2] D. Das, J.F. Lee, S. Cheng, Sulfonic acid functionalized mesoporous MCM-41 silica as a convenient catalyst for bisphenol-A synthesis, Chem. Commun. 6 (2001) 2178-2179.

    3. [3]

      [3] D. Das, Selective synthesis of bisphenol-A over mesoporous MCM silica catalysts functionalized with sulfonic acid groups, J. Catal. 223 (2004) 152-160.

    4. [4]

      [4] W. Kaleta, K. Nowiń ska, Immobilisation of heteropoly anions in Si-MCM-41 channels by means of chemical bonding to aminosilane groups, Chem. Commun. 6 (2001) 535-536.

    5. [5]

      [5] K. Nowiń ska, W. Kaleta, Synthesis of bisphenol-A over heteropoly compounds encapsulated into mesoporous molecular sieves, Appl. Catal. A 203 (2000) 91- 100.

    6. [6]

      [6] K. Shimizu, S. Kontani, S. Yamada, et al., Design of active centers for bisphenol-A synthesis by organic-inorganic dual modification of heteropolyacid, Appl. Catal. A 380 (2010) 33-39.

    7. [7]

      [7] G.D. Yadav, N. Kirthivasan, Synthesis of bisphenol-A: comparison of efficacy of ion exchange resin catalysts vis-à -vis heteropolyacid supported on clay and kinetic modelling, Appl. Catal. A 154 (1997) 29-53.

    8. [8]

      [8] A. Singh, Preparation of bisphenol-A over zeolite catalysts, Catal. Lett. 16 (1992) 431-435.

    9. [9]

      [9] B.S. Zheng, Present station of BPA at home and abroad and suggestions on development of China's BPA, Fine Spec. Chem. 12 (2001) 7-10.

    10. [10]

      [10] R.B. Wagner, A-preparation using ion exchange resin containing mercatpo and sulfic acid groups, US Patent 3 172 916 (1965).

    11. [11]

      [11] N.A. Francis, B.C. Louis, Cationic exchange polymeric resin, US Patent 3 153 001 (1964).

    12. [12]

      [12] B. Wang, H. Sun, J. Zhu, L. Wang, S. Chen, Bis(2-mercapto-ethyl) amine modification of macroporous sulfonic tesin catalyst in bisphenol-A synthesis, AIChE J. 59 (2013) 3816-3823.

    13. [13]

      [13] B.B. Gammill, G.R. Ladewig, G.E. Ham, Ion exchange catalyst for the preparation of bisphenols, US Patent 3 760 006 (1973).

    14. [14]

      [14] S. Takahim, S. Toshitaka, Ion exchange resin, JP Patent 8 089 819 (1996).

    15. [15]

      [15] B. Carvill, K. Glasgow, G. Kishan, Process for the synthesis of bisphenol, US Patent 0 116 751A (2004).

    16. [16]

      [16] T. Terajima, T. Takai, H. Nakamura, Modified ion exchange resin and process for producing bisphenols, US Patent 0 224 315A1 (2011).

    17. [17]

      [17] B. Schmid, M. Dö ker, J. Gmehling, Esterification of ethylene glycol with acetic acid catalyzed by amberlyst 36, Indust. Eng. Chem. Res. 47 (2008) 698-703.

    18. [18]

      [18] M. Kim, S. Salley, K. Ng, Transesterification of glycerides using a heterogeneous resin catalyst combined with a homogeneous catalyst, Energy Fuels 22 (2008) 3594-3599.

    19. [19]

      [19] M. Granollers, J. Izquierdo, F. Cunill, Effect of macroreticular acidic ion-exchange resins on 2-methyl-1-butene and 2-methyl-2-butene mixture oligomerization, Appl. Catal. A 435-436 (2012) 163-171.

    20. [20]

      [20] V. Magnotta, B. Gates, Superacid polymers: synthesis and analysis of AlCl3- sulfonic acid resin complexes, J. Polym. Sci. 15 (1977) 1341-1347.

    21. [21]

      [21] J. Penzien, C. Haeßner, A. Jentys, et al., Heterogeneous catalysts for hydroamination reactions: structure-activity relationship, J. Catal. 221 (2004) 302-312.

    22. [22]

      [22] K. Shimizu, H. Furukawa, N. Kobayashi, Y. Itaya, A. Satsuma, Effects of Brønsted and Lewis acidities on activity and selectivity of heteropolyacid-based catalysts for hydrolysis of cellobiose and cellulose, Green Chem. 11 (2009) 1627-1632.

    23. [23]

      [23] W. Shi, J. Zhao, X. Yuan, et al., Effects of Brønsted and Lewis acidities on catalytic activity of heteropolyacids in transesterification and esterification reactions, Chem. Eng. Technol. 35 (2012) 347-352.

    24. [24]

      [24] H. Yamamoto, From designer Lewis acid to designer Brønsted acid towards more reactive and selective acid catalysis, Proc. Jpn. Acad. Ser. B: Phys. Biol. Sci. 84 (2008) 134-146.

    25. [25]

      [25] M.L. Honkela, A. Root, M. Lindblad, A.O.I. Krause, Comparison of ion-exchange resin catalysts in the dimerisation of isobutene, Appl. Catal. A 295 (2005) 216- 223.

    26. [26]

      [26] F. Coutinho, R.R. Souza, A.S. Gomes, Synthesis, characterization and evaluation of sulfonic resins as catalysts, Eur. Polym. J. 40 (2004) 1525-1532.

    27. [27]

      [27] L.X. Mao, The preparation of cyclohexene by dehydration of cyclohexanol on Ti4+ modificatory cation exchange resin catalyst, Ion Exch. Adsor. 20 (2004) 562-568.

    28. [28]

      [28] F. Zhang, X. Jiang, J. Hong, H. Lou, X. Zheng, Preparation of ZnCl2-modified ion exchange resin and its catalytic activity for esterification of ethanol and acetic acid under microwave, Chin. J. Catal. 31 (2010) 666-670.

    29. [29]

      [29] N. Bothe, F. Dö scher, J. Klein, H. Widdecke, Thermal stability of sulphonated styrene-divinylbenzene resins, Polymer 20 (1979) 850-854.

    30. [30]

      [30] Y. Feng, F. Zhang, Ionic electronegativity, J. Dallan Inst. Light Ind. 17 (1998) 70-76.

  • 加载中
    1. [1]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    2. [2]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    3. [3]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    4. [4]

      Yun-Xin HuangLin-Qian YuKe-Yu ChenHao WangShou-Yan ZhaoBao-Cheng HuangRen-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437

    5. [5]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    6. [6]

      Yunfa DongShijie ZhongYuhui HeZhezhi LiuShengyu ZhouQun LiYashuai PangHaodong XieYuanpeng JiYuanpeng LiuJiecai HanWeidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261

    7. [7]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

    8. [8]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    9. [9]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    10. [10]

      Wenbi WuYinchu DongHaofan LiuXuebing JiangLi LiYi ZhangMaling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260

    11. [11]

      Yang LiXiaoxu LiuTianyi JiMan ZhangXueru YanMengjie YaoDawei ShengShaodong LiPeipei RenZexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551

    12. [12]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    13. [13]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    14. [14]

      Ningning ZhaoYuyan LiangWenjie HuoXinyan ZhuZhangxing HeZekun ZhangYoutuo ZhangXianwen WuLei DaiJing ZhuLing WangQiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332

    15. [15]

      Lingjiang KouYong WangJiajia SongTaotao AiWenhu LiMohammad Yeganeh GhotbiPanya WattanapaphawongKoji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368

    16. [16]

      Chengmin HuPingxuan LiuZiyang SongYaokang LvHui DuanLi XieLing MiaoMingxian LiuLihua Gan . Tailor-made overstable 3D carbon superstructures towards efficient zinc-ion storage. Chinese Chemical Letters, 2025, 36(4): 110381-. doi: 10.1016/j.cclet.2024.110381

    17. [17]

      Zhixiao XiongShanni QiuYuyu WangHouna DuanYi XiaoYufang XuWeiping ZhuXuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002

    18. [18]

      Lijun MaoShuo LiXin ZhangZhan-Ting LiDa Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363

    19. [19]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    20. [20]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

Metrics
  • PDF Downloads(0)
  • Abstract views(687)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return