Citation: Yong-Juan Lu, Jun-Hong Jia. The effect of complexing agent on crystal growth, structure and properties of nanostructured Cu2-xS thin films[J]. Chinese Chemical Letters, ;2014, 25(11): 1473-1478. doi: 10.1016/j.cclet.2014.06.003 shu

The effect of complexing agent on crystal growth, structure and properties of nanostructured Cu2-xS thin films

  • Corresponding author: Yong-Juan Lu,  Jun-Hong Jia, 
  • Received Date: 8 April 2014
    Available Online: 28 May 2014

  • Thin films of Cu2-xS (x=0, 1) were deposited on self-assembled, monolayer modified substrates in the copper-thiosulfate system with various concentrations of ethylene diamine tetraacetic acid (EDTA) at a low temperature of 70℃. The thin films were characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectroscope (XPS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM). The optical and photoelectrochemical (PEC) properties of the Cu2-xS semiconductor films were investigated by ultraviolet-visible (UV-vis) absorption spectroscopy and a three-electrode system. It is found that EDTA plays a key role in the process of Cu2-xS nanocrystals formation and growth. The compositions of the Cu2-xS nanocrystals varied from Cu2S (chalcocide) to CuS (covellite) through adjusting the concentration of EDTA, which is used as a complexing agent to yield high-quality Cu2-xS films. The growth mechanisms of Cu2-xS nanocrystals with different EDTA concentrations are proposed and discussed in detail.
  • 加载中
    1. [1]

      [1] D.C. Reynolds, G. Leies, L.L. Antes, R.E. Marburger, Photovoltaic effect in cadmium sulfide, Phys. Rev. 96 (1954) 533-534.

    2. [2]

      [2] Y.B. Li, W. Lu, Q. Huang, et al., Copper sulfide nanoparticles for photothermal ablation of tumor cells, Nanomedicine 5 (2010) 1161-1171.

    3. [3]

      [3] I. Ancutiene, V. Janickis, R. Ivanauskas, Formation and characterization of conductive thin layers of copper sulfide (CuxS) on the surface of polyethylene and polyamide by the use of higher polythionic acids, Appl. Surf. Sci. 252 (2006) 4218-4225.

    4. [4]

      [4] Z.B. Hai, J.L. Huang, H. Remita, J.F. Chen, Enhancement of alternating current electroluminescence properties by the addition of graphene oxide nanosheets as dielectric materials, Mater. Lett. 108 (2013) 304-307.

    5. [5]

      [5] M.T.S. Nair, L. Guerrero, P.K. Nair, Conversion of chemically deposited CuS thin films to Cu1.8S and Cu1.96S by annealing, Semicond. Sci. Technol. 13 (1998) 1164-1169.

    6. [6]

      [6] C. Nunes de Carvalho, P. Parreira, et al., P-type CuxS thin films: integration in a thin film transistor structure, Thin Solid Films 543 (2013) 3-6.

    7. [7]

      [7] H.T. Zhu, J.X. Wang, D.X. Wu, Fast synthesis, formation mechanism, and control of shell thickness of CuS hollow spheres, Inorg. Chem. 48 (2009) 7099-7104.

    8. [8]

      [8] Y. Zhao, H. Pan, Y. Lou, et al., Plasmonic Cu2-xS nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides, J. Am. Chem. Soc. 131 (2009) 4253-4261.

    9. [9]

      [9] P. Kumar, M. Gusain, R. Nagarajan, Synthesis of Cu1.8S and CuS from copperthiourea containing precursors; anionic (Cl , NO3 , SO4 2 ) influence on the product stoichiometry, Inorg. Chem. 50 (2011) 3065-3070.

    10. [10]

      [10] Q. Tian, M. Tang, Y. Sun, et al., Hydrophilic flower-like CuS superstructures as an efficient 980 nmlaser-driven photothermal agent for ablation of cancer cells, Adv. Mater. 23 (2011) 3542-3547.

    11. [11]

      [11] N. Banerjee, S.B. Krupanidhi, Synthesis and structural characterization of two dimensional hierarchical covellite nano-structures, Mater. Chem. Phys. 137 (2012) 466-471.

    12. [12]

      [12] S. Xu, Q. Wang, J.H. Cheng, Q.H. Meng, Y. Jiao, Preparation and characteristics of porous CuS microspheres consisted of polycrystalline nanoslices, Powder Technol. 199 (2010) 139-143.

    13. [13]

      [13] M. Saranya, C. Santhosh, R. Ramachandran, et al., Hydrothermal growth of CuS nanostructures and its photocatalytic properties, Powder Technol. 252 (2014) 25-32.

    14. [14]

      [14] J. Li, T.G. Jiu, G.H. Tao, et al., Manipulating surface ligands of copper sulfide nanocrystals: synthesis, characterization, and application to organic solar cells, J. Colloid Interface Sci. 419 (2014) 142-147.

    15. [15]

      [15] M. Kemmler, M. Lazell, P. O'Brien, et al., The growth of thin films of copper chalcogenide films by MOCVD and AACVD using novel single-molecule precursors, J. Mater. Sci. Mater. Electron. 13 (2002) 531-535.

    16. [16]

      [16] R. Kobayashi, T. Wada, S. Bakehe, R. Klenk, The effect of sulphur pressure on the depth distribution of elements in Cu(In,Ga)S2 films, Thin Solid Films 472 (2005) 71-75.

    17. [17]

      [17] R. Cordova, H. Gomez, R. Schrebler, et al., Electrosynthesis and electrochemical characterization of a thin phase of CuxS (x! 2) on ITO electrode, Langmuir 18 (2002) 8647-8654.

    18. [18]

      [18] M.T.S. Nair, P.K. Nair, Chemical bath deposition of CuxS thin films and their prospective large area applications, Semicond. Sci. Technol. 4 (1989) 191-199.

    19. [19]

      [19] K.M. Gadave, C.D. Lokhande, Formation of CuxS films through a chemical bath deposition process, Thin Solid Films 229 (1993) 1-4.

    20. [20]

      [20] T. Yamamoto, K. Tanaka, E. Kubota, K. Osakada, Deposition of copper sulfide on the surface of poly(ethylene terephthalate) and poly(vinyl alcohol) films in aqueous solution to give electrically conductive films Sxad, Chem. Mater. 5 (1993) 1352- 1357.

    21. [21]

      [21] R.S. Mane, C.D. Lokhande, Chemical deposition method for metal chalcogenide thin films, Mater. Chem. Phys. 65 (2000) 1-31.

    22. [22]

      [22] Z. Tao, T. Zhan, T. Zhou, X. Zhao, Z. Li, Synthesis, properties, and self-assembly of 2,3-bis(n-octyl) hexaazatriphenylene, Chin. Chem. Lett. 24 (2013) 453-456.

    23. [23]

      [23] A.U. Ubale, Effect of complexing agent on growth process and properties of nanostructured Bi2S3 thin films deposited by chemical bath deposition method, Mater. Chem. Phys. 121 (2010) 555-560.

    24. [24]

      [24] S.C. Liufu, L.D. Chen, Q. Yao, F.Q. Huang, In situ assembly of CuxS quantum-dots into thin film: a highly conductive p-type transparent film, J. Phys. Chem. C 112 (2008) 12085-12088.

    25. [25]

      [25] S.R. Gadakh, C.H. Bhosale, Effect of concentration of complexing agent (tartaric acid) on the properties of spray deposited Sb2S3 thin films, Mater. Chem. Phys. 78 (2003) 367-371.

    26. [26]

      [26] S.B. Patil, A.K. Singh, Effect of complexing agent on the photoelectrochemical properties of bath deposited CdS thin films, Appl. Surf. Sci. 256 (2010) 2884-2889.

    27. [27]

      [27] K.W. Cheng, S.C. Wang, Effects of complex agents on the physical properties of Ag-In-S ternary semiconductor films using chemical bath deposition, Mater. Chem. Phys. 115 (2009) 14-20.

    28. [28]

      [28] M.B. Sigman, A. Ghezelbash, T. Hanrath, et al., Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets, J. Am. Chem. Soc. 125 (2003) 16050-16057.

    29. [29]

      [29] Y.J. Lu, X. Meng, G.W. Yi, J.H. Jia, In situ growth of CuS thin films on functionalized self-assembled monolayers using chemical bath deposition, J. Colloid Interface Sci. 356 (2011) 726-733.

    30. [30]

      [30] N. Faucheux, R. Schweiss, K. Lutzow, C. Werner, T. Groth, Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies, Biomaterials 25 (2004) 2721-2730.

    31. [31]

      [31] Y.H. Chen, C.Y. Huang, F.D. Lai, et al., Electroless deposition of the copper sulfide coating on polyacrylonitrile with a chelating agent of triethanolamine and its EMI shielding effectiveness, Thin Solid Films 517 (2009) 4984-4988.

    32. [32]

      [32] M.D. Xin, K.W. Li, H. Wang, Synthesis of CuS thin films by microwave assisted chemical bath deposition, Appl. Surf. Sci. 256 (2009) 1436- 1442.

    33. [33]

      [33] I. Grozdanov, C.K. Barlingay, S.K. Dey, M. Ristov, M. Najdoski, Experimental study of the copper thiosulfate system with respect to thin-film deposition, Thin Solid Films 250 (1994) 67-71.

    34. [34]

      [34] S.V. Bagul, S.D. Chavhan, R. Sharma, Growth and characterization of CuxS (x=1.0, 1.76, and 2.0) thin films grown by solution growth technique (SGT), J. Phys. Chem. Solids 68 (2007) 1623-1629.

    35. [35]

      [35] J.J. Nairn, P.J. Shapiro, B. Twamley, et al., Preparation of ultrafine chalcopyrite nanoparticles via the photochemical decomposition of molecular single-source precursors, Nano Lett. 6 (2006) 1218-1223.

    36. [36]

      [36] D. Chen, Y.F. Gao, G. Wang, et al., Surface tailoring for controlled photoelectrochemical properties: effect of patterned TiO2 microarrays, J. Phys. Chem. C 111 (2007) 13163-13169.

    37. [37]

      [37] E. Elizalde, F. Rueda, On minority-carrier transport parameter determination in heterojunctions from spectral response measurements: the cases of chalcocite, djurleite and digenite, J Phys. D: Appl. Phys. 19 (1986) 1563-1574.

  • 加载中
    1. [1]

      Weiping GuoYing ZhuHong-Hua CuiLingyun LiYan YuZhong-Zhen LuoZhigang Zouβ-Pb3P2S8: A new optical crystal with exceptional birefringence effect. Chinese Chemical Letters, 2025, 36(2): 110256-. doi: 10.1016/j.cclet.2024.110256

    2. [2]

      Shuying LiWeiwei ZhuGeXuan SunChongzhen SunZhaojun LiuChenghe XiongMin XiaoGuofeng Gu . Convergent synthesis and immunological study of oligosaccharide derivatives related to galactomannan from Antrodia cinnamomea. Chinese Chemical Letters, 2024, 35(5): 109089-. doi: 10.1016/j.cclet.2023.109089

    3. [3]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    4. [4]

      Xiaoyu ChenJiahao HuJingyi LinHaiyang HuangChangqing YeHongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923

    5. [5]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    6. [6]

      Rongjian ChenJiahui LiuCaixia LinYuanming LiYanhou GengYaofeng Yuan . Synthesis and properties of tetraphenylethene cationic cyclophanes based on o-carborane skeleton. Chinese Chemical Letters, 2024, 35(12): 110074-. doi: 10.1016/j.cclet.2024.110074

    7. [7]

      Mohamed Saber LassouedFaizan AhmadYanzhen Zheng . Film thickness effect on 2D lead-free hybrid double perovskite properties: Band gap, photocurrent and stability. Chinese Chemical Letters, 2025, 36(4): 110477-. doi: 10.1016/j.cclet.2024.110477

    8. [8]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    9. [9]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    10. [10]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    11. [11]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    12. [12]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    13. [13]

      Zili Ma Zeyu Li Jun Lv . Shortening the formation time of oxide thin film photoelectrodes from hours to seconds. Chinese Journal of Structural Chemistry, 2025, 44(4): 100450-100450. doi: 10.1016/j.cjsc.2024.100450

    14. [14]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    15. [15]

      Tingting HuangZhuanlong DingHao LiuPing-An ChenLongfeng ZhaoYuanyuan HuYifan YaoKun YangZebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117

    16. [16]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    17. [17]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    18. [18]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    19. [19]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    20. [20]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

Metrics
  • PDF Downloads(0)
  • Abstract views(680)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return