Citation:
Long-Fei Yuan, Yu-Jian He, Hong Zhao, Ying Zhou, Pei Gu. Colorimetric detection of D-amino acids based on anti-aggregation of gold nanoparticles[J]. Chinese Chemical Letters,
;2014, 25(7): 995-1000.
doi:
10.1016/j.cclet.2014.06.002
-
A new method has been proposed to realize the visual detection of D-amino acids (DAAs) via the antiaggregation of 4-mercaptobenzoic acid modified gold nanoparticles (AuNPs) in the presence of D-amino acid oxidase (DAAO). The negatively charged AuNPs were prepared using sodium citrate as a reducer and stabilizer. The presence of 4-mercaptobenzoic acid (4-MBA) and Cu2+ induces the aggregation of AuNPs, resulting in a color change from ruby red to royal purple. However, DAAO could oxidize DAAs to generate H2O2. In the presence of H2O2, the mercapto (-SH) group in 4-mercaptobenzoic acid can be oxidized to form a disulfide (-S-S-) bond. Based on these facts, the pre-incubation of DAAs and 4-mercaptobenzoic acid with DAAO would significantly reduce the concentration of free 4-mercaptobenzoic acidmolecules, thus the aggregation of AuNPs was interrupted since due to the lack of inducer. As the concentration of DAAs increases, the color of the AuNPs solution would progress from royal purple to ruby red. Consequently, DAAs could be monitored by the colorimetric response of AuNPs using a UV-vis spectrophotometer or even naked eyes. This DAAO mediated visual detectionmethod could determine Dalanine (D-Ala) as a representative DAA with concentrations ranging from 1.5×10-7 mol L-1 to 3.0×10-5 mol L-1, and the detection limit was as low as 7.5×10-8 mol L-1. The proposed method is convenient, low-cost and free of complex equipment, making it feasible to analyze the concentration of D-Ala in real samples of β-amyloid peptide (Aβ1-42).
-
-
-
[1]
[1] M. Friedman, Chemistry, nutrition, and microbiology of D-amine acids, J. Agric. Food Chem. 47 (1999) 3457-3479.
-
[2]
[2] C. Henneberger, T. Papouin, S.H.R. Oliet, et al., Long-term potentiation depends on release of D-serine from astrocytes, Nature 463 (2010) 232-236.
-
[3]
[3] I. Azua, I. Goiriena, Z. Bana, et al., Release and consumption of D-amino acids during growth of marine prokaryotes, Microb. Ecol. 67 (2014) 1-12.
-
[4]
[4] V. Vranova, H. Zahradnickova, D. Janous, et al., The significance of D-amino acids in soil, fate and utilization by microbes and plants: review and identification of knowledge gaps, Plant Soil 354 (2012) 21-39.
-
[5]
[5] S.A. Fuchs, R. Berger, L.W.J. Klomp, et al., D-amino acids in the central nervous system in health and disease, Mol. Genet. Metab. 85 (2005) 168-180.
-
[6]
[6] H. Wolosker, E. Dumin, L. Balan, V.N. Foltyn, D-amino acids in the brain: D-serine in neurotransmission and neurodegeneration, FEBS J. 275 (2008) 3514-3526.
-
[7]
[7] G.H. Fisher, L. Petrucelli, C. Gardner, et al., Free D-amino acids in human cerebrospinalfluid of Alzheimer-disease, multiple-sclerosis, and healthy control subjects, Mol. Chem. Neuropathol. 23 (1994) 115-124.
-
[8]
[8] S. Kato, Y. Kito, H. Hemmi, T. Yoshimura, Simultaneous determination of D-amino acids by the coupling method of D-amino acid oxidase with high-performance liquid chromatography, J. Chromatogr. B 879 (2011) 3190-3195.
-
[9]
[9] C. Mueller, J.R. Fonseca, T.M. Rock, S. Krauss-Etschmann, P. Schmitt-Kopplin, Enantioseparation and selective detection of D-amino acids by ultra-high-performance liquid chromatography/mass spectrometry in analysis of complex biological samples, J. Chromatogr. A 1324 (2014) 109-114.
-
[10]
[10] Y. Gogami, K. Okada, T. Oikawa, High-performance liquid chromatography analysis of naturally occurring D-amino acids in sake, J. Chromatogr. B 879 (2011) 3259-3267.
-
[11]
[11] H. Brückner, A. Schieber, Determination of free D-amino acids in mammalia by chiral gas chromatography-mass spectrometry, J. High Resolut. Chromatogr. 23 (2000) 576-582.
-
[12]
[12] R. Patzold, H. Bruckner, Gas chromatographic determination and mechanism of formation of D-amino acids occurring in fermented and roasted cocoa beans, cocoa powder, chocolate and cocoa shell, Amino Acids 31 (2006) 63-72.
-
[13]
[13] R. Patzold, A. Schieber, H. Bruckner, Gas-chromatographic quantification of free Damino acids in higher vertebrates, Biomed. Chromatogr. 19 (2005) 466-473.
-
[14]
[14] C.H. Nieh, Y. Kitazumi, O. Shirai, K. Kano, Sensitive D-amino acid biosensor based on oxidase/peroxidase system mediated by pentacyanoferrate-bound polymer, Biosens. Bioelectron. 47 (2013) 350-355.
-
[15]
[15] S. Lata, B. Batra, C.S. Pundir, Construction of D-amino acid biosensor based on Damino acid oxidase immobilized onto poly (indole-5-carboxylic acid)/zinc sulfide nanoparticles hybrid film, Process Biochem. 47 (2012) 2131-2138.
-
[16]
[16] S. Lata, B. Batra, P. Kumar, et al., Construction of an amperometric D-amino acid biosensor based on D-amino acid oxidase/carboxylated mutliwalled carbon nanotube/ copper nanoparticles/polyalinine modified gold electrode, Anal. Biochem. 437 (2013) 1-9.
-
[17]
[17] E. Rosini, G. Molla, C. Rossetti, et al., A biosensor for all D-amino acids using evolved D-amino acid oxidase, J. Biotechnol. 135 (2008) 377-384.
-
[18]
[18] Y.C. Cao, R.C. Jin, S. Thaxton, et al., A two-color-change, nanoparticle-based method for DNA detection, Talanta 67 (2005) 449-455.
-
[19]
[19] H. Chi, B.H. Liu, G.J. Guan, et al., A simple, reliable and sensitive colorimetric visualization of melamine in milk by unmodified gold nanoparticles, Analyst 135 (2010) 1070-1075.
-
[20]
[20] F. Li, Y. Feng, C. Zhao, et al., Simple colorimetric sensing of trace bleomycin using unmodified gold nanoparticles, Biosens. Bioelectron. 26 (2011) 4628-4631.
-
[21]
[21] C.D. Medley, J.E. Smith, Z. Tang, et al., Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells, Anal. Chem. 80 (2008) 1067-1072.
-
[22]
[22] H. Li, Y.W. Yang, Gold nanoparticles functionalized with supramolecular macrocycles, Chin. Chem. Lett. 24 (2013) 545-552.
-
[23]
[23] B.H. Wu, H.Y. Yang, H.Q. Huang, et al., Solvent effect on the synthesis of monodisperse amine-capped Au nanoparticles, Chin. Chem. Lett. 24 (2013) 457-462.
-
[24]
[24] S. Link, M.A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods, J. Phys. Chem. B 103 (1999) 8410-8426.
-
[25]
[25] Y.P. Li, L. Jiang, T. Zhang, et al., Colorimetric detection of glucose using a boronic acid derivative receptor attached to unmodified AuNPs, Chin. Chem. Lett. 25 (2014) 77-79.
-
[26]
[26] R. Elghanian, J.J. Storhoff, R.C. Mucic, et al., Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science 277 (1997) 1078-1081.
-
[27]
[27] C.Y. Lin, C.J. Yu, Y.H. Lin, W.L. Tseng, Colorimetric sensing of silver(I) and mercury(II) ions based on an assembly of Tween 20-stabilized gold nanoparticles, Anal. Chem. 82 (2010) 6830-6837.
-
[28]
[28] N. Ding, H. Zhao, W.B. Peng, et al., A simple colorimetric sensor based on antiaggregation of gold nanoparticles for Hg2+ detection, Colloids Surf. A-Physicochem. Eng. Aspect 395 (2012) 161-167.
-
[29]
[29] J.S. Lee, M.S. Han, C.A. Mirkin, Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles, Angew. Chem. Int. Ed. 46 (2007) 4093-4096.
-
[30]
[30] Y. Xue, H. Zhao, Z.J. Wu, et al., Colorimetric detection of Cd2+ using gold nanoparticles cofunctionalized with 6-mercaptonicotinic acid and L-cysteine, Analyst 136 (2011) 3725-3730.
-
[31]
[31] Y. Zhou, P.L. Wang, X.O. Su, et al., Colorimetric detection of ractopamine and salbutamol using gold nanoparticles functionalized with melamine as a probe, Talanta 112 (2013) 20-25.
-
[32]
[32] X.F. Zhang, H. Zhao, Y. Xue, et al., Colorimetric sensing of clenbuterol using gold nanoparticles in the presence of melamine, Biosens. Bioelectron. 34 (2012) 112-117.
-
[33]
[33] X.F. Zhang, Y. Zhang, H. Zhao, et al., Highly sensitive and selective colorimetric sensing of antibiotics in milk, Anal. Chim. Acta 778 (2013) 63-69.
-
[34]
[34] X.F. Zhang, Z.J. Wu, Y. Xue, et al., Colorimetric detection of melamine based on the interruption of the synthesis of gold nanoparticles, Anal. Methods 5 (2013) 1930-1934.
-
[35]
[35] Z.J. Wu, H. Zhao, Y. Xue, et al., Colorimetric detection of melamine during the formation of gold nanoparticles, Biosens. Bioelectron. 26 (2011) 2574-2578.
-
[36]
[36] Q.A. Cao, H. Zhao, Y.J. He, et al., Hydrogen-bonding-induced colorimetric detection of melamine by nonaggregation-based Au-NPs as a probe, Biosens. Bioelectron. 25 (2010) 2680-2685.
-
[37]
[37] Y. Zhou, H. Zhao, Y.J. He, N. Ding, Q. Cao, Colorimetric detection of Cu2+ using 4-mercaptobenzoic acid modified silver nanoparticles, Colloid Surf. A-Physicochem. Eng. Aspect 391 (2011) 179-183.
-
[38]
[38] Y.C. Shiang, C.C. Huang, H.T. Chang, Gold nanodot-based luminescent sensor for the detection of hydrogen peroxide and glucose, Chem. Commun. (2009) 3437-3439.
-
[39]
[39] A.R. Quesada, R.W. Byrnes, S.O. Krezoski, et al., Direct reaction of H2O2 with sulfhydryl groups in HL-60 cells: zinc-metallothionein and other sites, Arch. Biochem. Biophys. 334 (1996) 241-250.
-
[40]
[40] B. Cardey,M. Enescu, Selenocysteine versus cysteine reactivity: a theoretical study of their oxidation by hydrogen peroxide, J. Phys. Chem. A 111 (2007) 673-678.
-
[41]
[41] J. Wang, D.M. Wang, Y.F. Li, Study of cysteine modified gold nanoparticles as a colorimetric detection platform for oxidants, Chin. Sci. Bull. 56 (2011) 1196-1203.
-
[42]
[42] L.F. Yuan, Y.J. He, Effect of surface charge of PDDA-protected gold nanoparticles on the specificity and efficiency of DNA polymerase chain reaction, Analyst 138 (2013) 539-545.
-
[43]
[43] X.H. Ji, X.N. Song, J. Li, et al., Size control of gold nanocrystals in citrate reduction: the third role of citrate, J. Am. Chem. Soc. 129 (2007) 13939-13948.
-
[44]
[44] A. Daniello, A. Vetere, G.H. Fisher, et al., Presence of D-alanine in proteins of normal and Alzheimer human brain, Brain Res. 592 (1992) 44-48.
-
[45]
[45] K. Wiesehan, K. Buder, R.P. Linke, et al., Selection of D-amino-acid peptides that bind to Alzheimer's disease amyloid peptide Aβ1-42 by mirror image phage display, Chembiochem 4 (2003) 748-753.
-
[46]
[46] Y.S. Shim, W.J. Yoon, J. Ha, et al., Method validation of 16 types of structural amino acids using an automated amino acid analyzer, Food Sci. Biotechnol. 22 (2013) 1567-1571.
-
[47]
[47] S.V. Khoronenkova, V.I. Tishkov, D-amino acid oxidase: physiological role and applications, Biochemistry (Mosc.) 73 (2008) 1511-1518.
-
[1]
-
-
-
[1]
Xiangqian Cao , Chenkai Yang , Xiaodong Zhu , Mengxin Zhao , Yilin Yan , Zhengnan Huang , Jinming Cai , Jingming Zhuang , Shengzhou Li , Wei Li , Bing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199
-
[2]
Yiyang Shen , Zhen Zhang , Ruyi Liang , Tongbo Wu . Unraveling the interplay of DNAzyme and interfacial factors for enhanced biosensing. Chinese Chemical Letters, 2024, 35(12): 109638-. doi: 10.1016/j.cclet.2024.109638
-
[3]
Guorong Li , Yijing Wu , Chao Zhong , Yixin Yang , Zian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904
-
[4]
Gengchen Guo , Tianyu Zhao , Ruichang Sun , Mingzhe Song , Hongyu Liu , Sen Wang , Jingwen Li , Jingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198
-
[5]
Chuan-Zhi Ni , Ruo-Ming Li , Fang-Qi Zhang , Qu-Ao-Wei Li , Yuan-Yuan Zhu , Jie Zeng , Shuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862
-
[6]
Zhen Dai , Linzhi Tan , Yeyu Su , Kerui Zhao , Yushun Tian , Yu Liu , Tao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121
-
[7]
Xiang Huang , Dongzhen Xu , Yang Liu , Xia Huang , Yangfan Wu , Dongmei Fang , Bing Xia , Wei Jiao , Jian Liao , Min Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665
-
[8]
Qian Ren , Xue Dai , Ran Cen , Yang Luo , Mingyang Li , Ziyun Zhang , Qinghong Bai , Zhu Tao , Xin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022
-
[9]
Min-Hang Zhou , Jun Jiang , Wei-Min He . EDA-complexes-enabled photochemical synthesis of α-amino acids with imines and tetrabutylammonium oxalate. Chinese Chemical Letters, 2025, 36(1): 110446-. doi: 10.1016/j.cclet.2024.110446
-
[10]
Shaonan Tian , Yu Zhang , Qing Zeng , Junyu Zhong , Hui Liu , Lin Xu , Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160
-
[11]
Zhi Li , Wenpei Li , Shaoping Jiang , Chuan Hu , Yuanyu Huang , Maxim Shevtsov , Huile Gao , Shaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150
-
[12]
Jia Chen , Yun Liu , Zerong Long , Yan Li , Hongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463
-
[13]
Kun Zhang , Ni Dan , Dan-Dan Ren , Ruo-Yu Zhang , Xiaoyan Lu , Ya-Pan Wu , Li-Lei Zhang , Hong-Ru Fu , Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244
-
[14]
Min Huang , Ru Cheng , Shuai Wen , Liangtong Li , Jie Gao , Xiaohui Zhao , Chunmei Li , Hongyan Zou , Jian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379
-
[15]
Yiyue Ding , Qiuxiang Zhang , Lei Zhang , Qilu Yao , Gang Feng , Zhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593
-
[16]
Hengying Xiang , Nanping Deng , Lu Gao , Wen Yu , Bowen Cheng , Weimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182
-
[17]
Yuxin Wang , Zhengxuan Song , Yutao Liu , Yang Chen , Jinping Li , Libo Li , Jia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779
-
[18]
Yunxia Liu , Guandong Wu , Lin Li , Yiming Niu , Bingsen Zhang , Botao Qiao , Junhu Wang . Construction of sintering-resistant gold catalysts via ascorbic-acid inducing strong metal-support interactions. Chinese Chemical Letters, 2025, 36(4): 110608-. doi: 10.1016/j.cclet.2024.110608
-
[19]
Xiaoning Li , Quanyu Shi , Meng Li , Ningxin Song , Yumeng Xiao , Huining Xiao , Tony D. James , Lei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021
-
[20]
Chong Liu , Ling Li , Jiahui Gao , Yanwei Li , Nazhen Zhang , Jing Zang , Cong Liu , Zhaopei Guo , Yanhui Li , Huayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(611)
- HTML views(0)