Citation: Xiao-Hai Yang, Fang Zhao, Lei-Liang He, Ke-Min Wang, Jin Huang, Qing Wang, Jian-Bo Liu, Meng Yang. A facile approach toward multicolor polymers:Supramolecular self-assembly via host-guest interaction[J]. Chinese Chemical Letters, ;2014, 25(10): 1318-1322. doi: 10.1016/j.cclet.2014.05.051 shu

A facile approach toward multicolor polymers:Supramolecular self-assembly via host-guest interaction

  • Corresponding author: Ke-Min Wang, 
  • Received Date: 30 April 2014
    Available Online: 28 May 2014

    Fund Project: This study was supported by the National Natural Science Foundation of China (Nos. 21190044, 21175035) (Nos. 21190044, 21175035) National Basic Research Program (No. 2011CB911002) (No. 2011CB911002) International Science & Technology operation Program of China (No. 2010DFB30300). (No. 2010DFB30300)

  • A one-step and facile strategy toward the construction of multicolor polymers via supramolecular selfassembly was proposed. Multicolor polymers were simply prepared by the self-assembly of adamantane-labeled fluorescein, adamantane-labeled rhodamine B and β-cyclodextrin polymers via host-guest interaction between β-cyclodextrin and adamantane. Multicolor polymers showed several interesting properties: multiple emission signatures by a single wavelength excitation, easy tunability, intense fluorescence, high photostablility. In addition, the self-assembly approach implied a facile and flexible strategy for constructing functionalized materials, such as multicolor materials for biological labeling and imaging, and sensing materials for the detection of physiological parameters.
  • 加载中
    1. [1]

      [1] E. Schwartz, S. Le Gac, J.J. Cornelissen, et al., Macromolecular multi-chromophoric scaffolding, Chem. Soc. Rev. 39 (2010) 1576-1599.

    2. [2]

      [2] E.C. Greyson, B.R. Stepp, X. Chen, et al., Singlet exciton fission for solar cell applications: energy aspects of interchromophore coupling, J. Phys. Chem. B 114 (2009) 14223-14232.

    3. [3]

      [3] B.E. Hardin, E.T. Hoke, P.B. Armstrong, et al., Increased light harvesting in dyesensitized solar cells with energy relay dyes, Nat. Photon. 3 (2009) 406-411.

    4. [4]

      [4] A.C. Grimsdale, K. Leok Chan, R.E. Martin, et al., Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices, Chem. Rev. 109 (2009) 897-1091.

    5. [5]

      [5] M. Shi, J. Chen, Y. Huang, et al., A multicolor nano-immunosensor for the detection of multiple targets, RSC Adv. 3 (2013) 13884-13890.

    6. [6]

      [6] J.Z. Song, Q. Yang, F.T. Lv, L.B. Liu, S. Wang, Visual detection of DNA mutation using multicolor fluorescent coding, ACS Appl. Mater. Interfaces 4 (2012) 2885-2890.

    7. [7]

      [7] S. Günes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells, Chem. Rev. 107 (2007) 1324-1338.

    8. [8]

      [8] F.J. Hoeben, P. Jonkheijm, E. Meijer, P.H.J. Schenning Albertus, About supramolecular assemblies of π-conjugated systems, Chem. Rev. 105 (2005) 1491-1546.

    9. [9]

      [9] A. Datta, S.K. Pati, Dipolar interactions and hydrogen bonding in supramolecular aggregates: understanding cooperative phenomena for 1st hyperpolarizability, Chem. Soc. Rev. 35 (2006) 1305-1323.

    10. [10]

      [10] G.C. Bazan, Novel organic materials through control of multichromophore interactions, J. Org. Chem. 72 (2007) 8615-8635.

    11. [11]

      [11] E. Herz, A. Burns, D. Bonner, et al., Large stokes-shift fluorescent silica nanoparticles with enhanced emission over free dye for single excitation multiplexing, macro, Rapid Commun. 30 (2009) 1907-1910.

    12. [12]

      [12] L. Wang, W.H. Tan, Multicolor FRET silica nanoparticles by single wavelength excitation, Nano. Lett. 6 (2006) 84-88.

    13. [13]

      [13] C.N. Allen, N. Lequeux, C. Chassenieux, et al., Optical analysis of beads encoded with quantum dots coated with a cationic polymer, Adv. Mater. 19 (2007) 4420-4425.

    14. [14]

      [14] J.B. Liu, X. Yang, K.M. Wang, et al., Combining physical embedding and covalent bonding for stable encapsulation of quantum dots into agarose hydrogels, J. Mater. Chem. 22 (2012) 495-501.

    15. [15]

      [15] H. Nishi, T. Namari, S. Kobatake, Photochromic polymers bearing various diarylethene chromophores as the pendant: synthesis, optical properties, and multicolor photochromism, J. Mater. Chem. 21 (2011) 17249-17258.

    16. [16]

      [16] J.N. Wilson, E.T. Kool, Fluorescent DNA base replacements: reporters and sensors for biological systems, Org. Biomol. Chem. 4 (2006) 4265-4274.

    17. [17]

      [17] Y.N. Teo, E.T. Kool, DNA-multichromophore systems, Chem. Rev. 112 (2012) 4221-4245.

    18. [18]

      [18] W.Y. Yuan, Z.S. Lu, C.M. Li, Self-assembling microsized materials to fabricate multifunctional hierarchical nanostructures on macroscale substrates, J. Mater. Chem. A 1 (2013) 6416-6424.

    19. [19]

      [19] M. Vendrell, D. Zhai, J.C. Er, Y.T. Chang, Combinatorial strategies in fluorescent probe development, Chem. Rev. 112 (2012) 4391-4420.

    20. [20]

      [20] T. Tsuruoka, H. Kawasaki, H. Nawafune, et al., Controlled self-assembly of metalorganic frameworks on metal nanoparticles for efficient synthesis of hybrid nanostructures, ACS Appl. Mater. Interfaces 3 (2011) 3788-3791.

    21. [21]

      [21] O.I. Wilner, I. Willner, Functionalized DNA nanostructures, Chem. Rev. 112 (2012) 2528-2556.

    22. [22]

      [22] B. Mu, Y.R. Kang, A.Q. Wang, Preparation of a polyelectrolyte-coated magnetic attapulgite composite for the adsorption of precious metals, J. Mater. Chem. A 1 (2013) 4804-4811.

    23. [23]

      [23] E. Busseron, Y. Ruff, E. Moulin, N. Giuseppone, Supramolecular self-assemblies as functional nanomaterials, Nanoscale 5 (2013) 7098-7140.

    24. [24]

      [24] W. Tao, Y. Liu, B. Jiang, et al., A linear-hyperbranched supramolecular amphiphile and its self-assembly into vesicles with great ductility, J. Am. Chem. Soc. 134 (2012) 762-764.

    25. [25]

      [25] E. Deniz, N. Kandoth, A. Fraix, et al., Photoinduced fluorescence activation and nitric oxide release with biocompatible polymer nanoparticles, Chem. Eur. J. 18 (2012) 15782-15787.

    26. [26]

      [26] L.M. Chen, X. Zhao, Y. Lin, et al., A supramolecular strategy to assemble multifunctional viral nanoparticles, Chem. Commun. 49 (2013) 9678-9680.

    27. [27]

      [27] L. Wang, L.L. Li, H.L. Ma, et al., Recent advances in biocompatible supramolecular assemblies for biomolecular detection and delivery, Chin. Chem. Lett. 24 (2013) 351-358.

    28. [28]

      [28] C. Koopmans, H. Ritter, Formation of physical hydrogels via host-guest interactions of β-cyclodextrin polymers and copolymers bearing adamantyl groups, Macromolecules 41 (2008) 7418-7422.

    29. [29]

      [29] H.A. Benesi, J.H. Hildebrand, A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons, J. Am. Chem. Soc. 71 (1949) 2703-2707.

    30. [30]

      [30] V. Indirapriyadharshini, P. Karunanithi, P. Ramamurthy, Inclusion of resorcinolbased acridinedione dyes in cyclodextrins: fluorescence enhancement, Langmuir 17 (2001) 4056-4060.

    31. [31]

      [31] G.S. Chen, M. Jiang, Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly, Chem. Soc. Rev. 40 (2011) 2254-2266.

    32. [32]

      [32] W. Shi, X.H. Li, H.M. Ma, A tunable ratiometric pH sensor based on carbon nanodots for the quantitative measurement of the intracellular pH of whole cells, Angew. Chem. Int. Ed. 51 (2012) 6432-6435.

  • 加载中
    1. [1]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    2. [2]

      Jie YangXin-Yue LouDihua DaiJingwei ShiYing-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818

    3. [3]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    4. [4]

      Yu-Hui ZhangYe TianXianliang ShengChen-Shuang LiuLu-Qiang WeiJie WangYong Chen . Construction of a black phosphorous-based noncovalent multiple nanosupramolecular assembly for synergistic targeted photothermal and chemodynamic therapy. Chinese Chemical Letters, 2025, 36(4): 110193-. doi: 10.1016/j.cclet.2024.110193

    5. [5]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    6. [6]

      Yanbing ShenYuan YuanYaxin WangXiaonan MaWensheng YangYulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949

    7. [7]

      Lijun MaoShuo LiXin ZhangZhan-Ting LiDa Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363

    8. [8]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    9. [9]

      Xiangjun ZhangXiaodi YangYan WangZhongping XuSisi YiTao GuoYue LiaoXiyu TangJianxiang ZhangRuibing Wang . A supramolecular nanoprodrug for prevention of gallstone formation. Chinese Chemical Letters, 2025, 36(2): 109854-. doi: 10.1016/j.cclet.2024.109854

    10. [10]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    11. [11]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    12. [12]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    13. [13]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    14. [14]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    15. [15]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    16. [16]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    17. [17]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    18. [18]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    19. [19]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    20. [20]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2024.100335

Metrics
  • PDF Downloads(0)
  • Abstract views(683)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return