Citation:
Gui-Jiang Zhang, Xin Zhou, Xiao-Huan Zang, Zhi Li, Chun Wang, Zhi Wang. Analysis of nitrobenzene compounds in water and soil samples by graphene composite-based solid-phase microextraction coupled with gas chromatography-mass spectrometry[J]. Chinese Chemical Letters,
;2014, 25(11): 1449-1454.
doi:
10.1016/j.cclet.2014.05.049
-
In this work, solid-phase microextraction coupled with gas chromatography-mass spectrometry was developed to determine trace levels of nitrobenzene compounds in water and soil samples. Graphene was chosen as the extractionmaterial and its composite was coated on a stainless steel wire through sol- gel technique for the solid phase microextraction. The key parameters influencing the extraction efficiency were optimized. Under the optimal conditions, the linearity for the compounds was observed in the range of 0.02-15.0 μg/L for water samples, and 0.2-60.0 μg/kg for soil samples, with the correlation coefficients (r) of 0.9966-0.9987. The limits of detection of the method were 0.0025-0.005 μg/L for water samples, and 0.02-0.04 μg/kg for soil samples. The recoveries for the spiked samples were in the range of 72.0%-113.2%, and the precision, expressed as the relative standard deviations, was less than 12.1%.
-
-
-
[1]
[1] L. Saghatforoush, M. Hasanzadeh, N. Shadjou, Polystyrene-graphene oxide modified glassy carbon electrode as a new class of polymeric nanosensors for electrochemical determination of histamine, Chin. Chem. Lett. 25 (2014) 655-658.
-
[2]
[2] C. Wang, S. de Rooy, C.F. Lu, et al., An immobilized graphene oxide stationary phase for open-tubular capillary electrochromatography, Electrophoresis 34 (2013) 1197-1202.
-
[3]
[3] C. Feng, H.Y. Zhang, N.Z. Shang, S.T. Gao, C. Wang, Magnetic graphene nanocomposite as an efficient catalyst for hydrogenation of nitroarenes, Chin. Chem. Lett. 24 (2013) 539-541.
-
[4]
[4] Z.H. Wang, Q. Han, J.F. Xia, et al., Graphene-based solid-phase extraction disk for fast separation and preconcentration of trace polycyclic aromatic hydrocarbons from environmental water samples, J. Sep. Sci. 36 (2013) 1834-1842.
-
[5]
[5] H. Zhang, W.P. Low, H.K. Lee, Evaluation of sulfonated graphene sheets as sorbent for micro-solid-phase extraction combined with gas chromatography-mass spectrometry, J. Chromatogr. A 1233 (2012) 16-21.
-
[6]
[6] X.X. Ma, J.T. Wang, M. Sun, et al., Magnetic solid-phase extraction of neonicotinoid pesticides from pear and tomato samples using graphene grafted silica-coated Fe3O4 as the magnetic adsorbent, Anal. Methods 5 (2013) 2809-2815.
-
[7]
[7] W.N. Wang, R.Y. Ma, Q.H. Wu, C. Wang, Z. Wang, Magnetic microsphere-confined graphene for the extraction of polycyclic aromatic hydrocarbons from environmental water samples coupled with high performance liquid chromatographyfluorescence analysis, J. Chromatogr. A 1293 (2013) 20-27.
-
[8]
[8] L.L. Xu, J.J. Feng, J.B. Li, X. Liu, S.X. Jiang, Graphene oxide bonded fused-silica fiber for solid-phase microextraction-gas chromatography of polycyclic aromatic hydrocarbons in water, J. Sep. Sci. 35 (2012) 93-100.
-
[9]
[9] J. Zou, X.H. Song, J.J. Ji, et al., Polypyrrole/graphene composite-coated fiber for the solid-phase microextraction of phenols, J. Sep. Sci. 34 (2011), 2765-2772.
-
[10]
[10] C.L. Arthur, J. Pawliszyn, Solid phase microextraction with thermal desorption using fused silica optical fibers, Anal. Chem. 62 (1990) 2145-2148.
-
[11]
[11] D. Vuckovic, High-throughput solid-phase microextraction in multi-well-plate format, TrAC Trends Anal. Chem. 45 (2013) 136-153.
-
[12]
[12] A. Mehdinia, M.O. Aziz-Zanjani, Recent advances in nanomaterials utilized in fiber coatings for solid-phase microextraction, TrAC Trends Anal. Chem. 42 (2013) 205-215.
-
[13]
[13] J.J. Feng, M. Sun, L.L. Xu, et al., Novel double-confined polymeric ionic liquids as sorbents for solid-phase microextraction with enhanced stability and durability in high-ionic-strength solution, J. Chromatogr. A 1268 (2012) 16-21.
-
[14]
[14] J. Gonzalez-Alvarez, D. Blanco-Gomis, P. Arias-Abrodo, et al., Analysis of beer volatiles by polymeric imidazolium-solid phase microextraction coatings: synthesis and characterization of polymeric imidazolium ionic liquids, J. Chromatogr. A 1305 (2013) 35-40.
-
[15]
[15] J. Jia, X.J. Liang, L.C. Wang, et al., Nanoporous array anodic titanium-supported copolymeric ionic liquids as high performance solid-phase microextraction sorbents for hydrogen bonding compounds, J. Chromatogr. A 1320 (2013) 1-9.
-
[16]
[16] N. Chang, Z.Y. Gu, H.F. Wang, X.P. Yan, Metal organic-framework-based tandem molecular sieves as a dual platform for selective microextraction and highresolution gas chromatographic separation of n-alkanes in complex matrixes, Anal. Chem. 83 (2011) 7094-7101.
-
[17]
[17] L.Q. Yu, X.P. Yan, Covalent bonding of zeolitic imidazolate framework-90 to functionalized silica fibers for solid-phase microextraction, Chem. Commun. 49 (2013) 2142-2144.
-
[18]
[18] X.Z. Du, Y.R. Wang, X.J. Tao, H.L. Deng, An approach to application of mesoporous hybrid as a fiber coating of solid-phase microextraction, Anal. Chim. Acta 543 (2005) 9-16.
-
[19]
[19] N. Rastkari, R. Ahmadkhaniha, N. Samadi, A. Shafiee, M. Yunesian, Single-walled carbon nanotubes as solid-phase microextraction adsorbent for the determination of low-level concentrations of butyltin compounds in seawater, Anal. Chim. Acta 662 (2010) 90-96.
-
[20]
[20] N. Rastkari, R. Ahmadkhaniha, M. Yunesian, L. Baleh, A. Mesdaghinia, Sensitive determination of bisphenol A and bisphenol F in canned food using a solid-phase microextraction fibre coated with single-walled carbon nanotubes before GC/MS, Food Addit. Contam. 27 (2010) 1460-1468.
-
[21]
[21] J.M. Chen, J. Zou, J.B. Zeng, et al., Preparation and evaluation of graphene-coated solid-phase microextraction fiber, Anal. Chim. Acta 678 (2010) 44-49.
-
[22]
[22] Y.B. Luo, B.F. Yuan, Q.W. Yu, Y.Q. Feng, Substrateless graphene fiber: a sorbent for solid-phase microextraction, J. Chromatogr. A 1268 (2012) 9-15.
-
[23]
[23] V.K. Ponnusamy, J.F. Jen, A novel graphene nanosheets coated stainless steel fiber for microwave assisted headspace solid phase microextraction of organochlorine pesticides in aqueous samples followed by gas chromatography with electron capture detection, J. Chromatogr. A 1218 (2011) 6861-6868.
-
[24]
[24] H. Zhang, H.K. Lee, Plunger-in-needle solid-phase microextraction with graphene- based sol-gel coating as sorbent for determination of polybrominated diphenyl ethers, J. Chromatogr. A 1218 (2011) 4509-4516.
-
[25]
[25] Q.H. Wu, C. Feng, G.Y. Zhao, C. Wang, Z. Wang, Graphene-coated fiber for solidphase microextraction of triazine herbicides in water samples, J. Sep. Sci. 35 (2012) 193-199.
-
[26]
[26] S.L. Zhang, Z. Du, G.K. Li, Layer-by-layer fabrication of chemical-bonded graphene coating for solid-phase microextraction, Anal. Chem. 83 (2011) 7531-7541.
-
[27]
[27] X. Li, J.M. Chen, L.C. Du, Analysis of chloro- and nitrobenzenes in water by a simple polyaniline-based solid-phase microextraction coupled with gas chromatography, J. Chromatogr. A 1140 (2007) 21-28.
-
[28]
[28] X.T. Peng, X. Zhao, Y.Q. Feng, Preparation of phenothiazine bonded silica gel as sorbents of solid phase extraction and their application for determination of nitrobenzene compounds in environmental water by gas chromatography-mass spectrometry, J. Chromatogr. A 1218 (2011) 9314-9320.
-
[29]
[29] Q.H. Wu, G.Y. Zhao, C. Feng, C. Wang, Z. Wang, Preparation of a graphene-based magnetic nanocomposite for the extraction of carbamate pesticides from environmental water samples, J. Chromatogr. A 1218 (2011) 7936-7942.
-
[30]
[30] M. Tankiewicz, C. Morrison, M. Biziuk, Application and optimization of headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography- flame-ionization detector (GC-FID) to determine products of the petroleum industry in aqueous samples, Microchem. J. 108 (2013) 117-123.
-
[1]
-
-
-
[1]
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867
-
[2]
Sanmei Wang , Yong Zhou , Hengxin Fang , Chunyang Nie , Chang Q Sun , Biao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476
-
[3]
Sanmei Wang , Dengxin Yan , Wenhua Zhang , Liangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611
-
[4]
Wenjing Xiong , Yulin Xu , Fangzhou Zhao , Baokai Xia , Hongqiang Wang , Wei Liu , Sheng Chen , Yongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738
-
[5]
Caili Yang , Tao Long , Ruotong Li , Chunyang Wu , Yuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675
-
[6]
Chaozheng He , Pei Shi , Donglin Pang , Zhanying Zhang , Long Lin , Yingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116
-
[7]
Tian Feng , Yun-Ling Gao , Di Hu , Ke-Yu Yuan , Shu-Yi Gu , Yao-Hua Gu , Si-Yu Yu , Jun Xiong , Yu-Qi Feng , Jie Wang , Bi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259
-
[8]
Feng-Qing Huang , Yu Wang , Ji-Wen Wang , Dai Yang , Shi-Lei Wang , Yuan-Ming Fan , Raphael N. Alolga , Lian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670
-
[9]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[10]
Lu Huang , Jiang Wang , Hong Jiang , Lanfang Chen , Huanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896
-
[11]
Mengxiang Zhu , Tao Ding , Yunzhang Li , Yuanjie Peng , Ruiping Liu , Quan Zou , Leilei Yang , Shenglei Sun , Pin Zhou , Guosheng Shi , Dongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833
-
[12]
Tian Cao , Xuyin Ding , Qiwen Peng , Min Zhang , Guoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238
-
[13]
Rui Liu , Jinbo Pang , Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329
-
[14]
Wangyan Hu , Ke Li , Xiangnan Dou , Ning Li , Xiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806
-
[15]
Tong Zhang , Xiaojing Liang , Licheng Wang , Shuai Wang , Xiaoxiao Liu , Yong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889
-
[16]
Haoyang Wang , Ronghao Zhang , Yanlun Ren , Li Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833
-
[17]
Junmeng Luo , Qiongqiong Wan , Suming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836
-
[18]
Yanhua Chen , Xian Ding , Jun Zhou , Zhaoying Wang , Yunhai Bo , Ying Hu , Qingce Zang , Jing Xu , Ruiping Zhang , Jiuming He , Fen Yang , Zeper Abliz . Plasma metabolomics combined with mass spectrometry imaging reveals crosstalk between tumor and plasma in gastric cancer genesis and metastasis. Chinese Chemical Letters, 2025, 36(1): 110351-. doi: 10.1016/j.cclet.2024.110351
-
[19]
Haiyan Lu , Jiayue Ye , Yiping Wei , Hua Zhang , Konstantin Chingin , Vladimir Frankevich , Huanwen Chen . Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chinese Chemical Letters, 2025, 36(2): 110077-. doi: 10.1016/j.cclet.2024.110077
-
[20]
Keqiang Shi , Xiujuan Hong , Dongyan Xu , Tao Pan , Huiwen Wang , Hongru Feng , Cheng Guo , Yuanjiang Pan . Analysis of RNA modifications in peripheral white blood cells from breast cancer patients by mass spectrometry. Chinese Chemical Letters, 2025, 36(3): 110079-. doi: 10.1016/j.cclet.2024.110079
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(661)
- HTML views(2)