Citation: Sakineh Asghari, Nastaran Malekian, Roya Esmaeilpour, Mohammad Ahmadipour, Mojtaba Mohseni. Three-component synthesis and antibacterial evaluation of some novel 1,2-dihydroisoquinoline derivatives[J]. Chinese Chemical Letters, ;2014, 25(11): 1441-1444. doi: 10.1016/j.cclet.2014.05.047 shu

Three-component synthesis and antibacterial evaluation of some novel 1,2-dihydroisoquinoline derivatives

  • Corresponding author: Sakineh Asghari, 
  • Received Date: 14 April 2014
    Available Online: 19 May 2014

  • Isoquinoline reacts with dialkyl acetylenedicarboxylates in the presence of kojic acid or 8-hydroxyquinoline to generate 1,2-dihydroisoquinoline derivatives. The simplicity, mild reaction conditions and high yields of products make it an interesting process compared to other approaches. The compounds have been analyzed for antibacterial activity against Gram negative and Gram positive bacteria. The results indicated that 1,2-dihydroisoquinolines derived from kojic acid are effective against all of the studied bacteria especially against Bacillus subtilis, while the products obtained from 8-hydroxyquinoline are active only against Gram positive bacteria.
  • 加载中
    1. [1]

      [1] (a) C.P. Hansch, G. Sammes, J.B. Taylor, Comprehensive Medicinal Chemistry, Pergamon Press, Oxford, 1990; (b) K.W. Bentley, The Isoquinoline Alkaloide, Pergamon Press, London, 1965; (c) K.W. Bentley, b-Phenylethylamines and the isoquinoline alkaloids, Nat. Prob. Rep. 18 (2001) 148-170; (d) J.D. Scott, R.M. Williams, Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics, Chem. Rev. 102 (2002) 1669-1730.

    2. [2]

      [2] (a) B.E. Maryanoff, D.F. Mc Comsey, J.F. Gardocki, et al., Pyrroloisoquinoline antidepressants. 2. In-depth exploration of structure-activity relationships, J. Med. Chem. 30 (1987) 1433-1454; (b) K.L. Sorgi, C.A. Maryanoff, D.F. Mc Comsey, D.W. Graden, B.E. Maryanoff, Asymmetric induction in an enammonium-iminium rearrangement. Mechanistic insight via NMR, deuterium labeling, and reaction rate studies. Application to the stereoselective synthesis of pyrroloisoquinoline antidepressants, J. Am. Chem. Soc. 112 (1990) 3567-3579.

    3. [3]

      [3] E. Lukevics, I. Segal, A. Zablotskaya, S. Germane, Synthesis and neurotropic activity of novel quinoline derivatives, Molecules 2 (1997) 180-185.

    4. [4]

      [4] (a) L.F. Tietze, N. Rackehmann, I. Miller, Enantioselective total syntheses of the ipecacuanha alkaloid emetine, the alangium alkaloid aubulosine and a novel benzoquinolizidine alkaloid by using a domino process, Chem. Eur. J. 10 (2004) 2722-2731; (b) H.J. Knjlker, S. Agarwal, Total synthesis of the antitumor active pyrrolo[2,1- a]isoquinoline alkaloid (±)-crispine A, Tetrahedron Lett. 46 (2005) 1173-1175.

    5. [5]

      [5] J.S. Yadav, B.V. Subba Reddy, N.N. Yadav, M.K. Gupta, Three-component coupling reactions of isoquinolines, dimethyl acetylenedicarboxylate and indoles: a facile synthesis of 3-indolyl-1,2-dihydro-2-isoquinolinyl-2-butenedioate, Tetrahedron Lett. 49 (2008) 2815-2819.

    6. [6]

      [6] M. Nassiri, M.T. Maghsoodlou, R. Heydari, S.M. Habibi Khorassani, Novel multicomponent reactions involving isoquinoline or phenanthridine and activated acetylenic ester in the presence of heterocyclic NH or 1,3-dicarbonyl compounds, Mol. Divers. 12 (2008) 111-117.

    7. [7]

      [7] I. Yavari, M. Ghazanfarpour-Darjani, M. Sabbaghan, Z. Hossaini, Synthesis of dimethyl 1,2-dihydroisoquinolines through the reaction of isoquinoline and dimethyl acetylenedicarboxylate in the presence of amides, Tetrahedron Lett. 48 (2007) 3749-3751.

    8. [8]

      [8] J.S. Yadav, B.V. Subba Reddy, N.N. Yadav, M.K. Gupta, B. Sridhar, Gold(Ⅲ) chloridecatalyzed three-component reaction: a facile synthesis of alkynyl derivatives of 1,2-dihydroquinolines and isoquinolines, J. Org. Chem. 73 (2008) 6857-6859.

    9. [9]

      [9] A. Shaabani, A.H. Rezayan, A. Sarvary, M. Heidary, N. Seik Weng, Synthesis of highly stable unusual charge separated pyridinium, isoquinolinium, quinolinium, and Nmethylimidazolium tetronic acid zwitterions, Tetrahedron 65 (2009) 6063-6068.

    10. [10]

      [10] E.Y. Xia, J. Sun, R. Yao, C.G. Yan, Synthesis of zwitterionic salts via three component reactions of nitrogen-containing heterocycles, acetylenedicarboxylate and cyclic 1,3-dicarbonyl compounds, Tetrahedron 66 (2010) 3569-3574.

    11. [11]

      [11] M. Anary-Abbasinejad, H. Anaraki-Ardakani, M.H. Mosslemina, H.R. Khavasi, Isoquinoline-catalyzed reaction between 4-hydroxycoumarin or 4-hydroxy-6- methylpyran-1-one and dialkyl acetylene dicarboxylates: synthesis of coumarin and pyranopyrane derivative, J. Braz. Chem. Soc. 21 (2010) 319-323.

    12. [12]

      [12] I. Yavari, M. Piltan, L. Moradi, Synthesis of pyrrolo[2,1-a]isoquinolines from activated acetylenes, benzoylnitromethanes, and isoquinoline, Tetrahedron 65 (2009) 2067-2071.

    13. [13]

      [13] F. Khaleghi, L.B. Din, I. Jantan, W.A. Yaacob, M.A. Khalilzadeh, Facile synthesis of novel 1,4-benzoxazepin-2-one derivatives, Tetrahedron Lett.52 (2011) 7182-7184.

    14. [14]

      [14] J. Brtko, L. Rondahl, M. Fickova, et al., Kojic acid and its derivatives: history and present state of art, Cent. Eur. J. Public Health 12 (2004) S16-S20.

    15. [15]

      [15] R. Bentley, From miso, saké and shoyu to cosmetics: a century of science for kojic acid, Nat. Prod. Rep. 23 (2006) 1046-1062.

    16. [16]

      [16] A.Y. Shen, C.P. Chen, S.A. Roffler, Chelating agent possessing cytotoxicity and antimicrobial activity: 7-morpholinomethyl-8-hydroxyquinoline, Life Sci. 64 (1999) 813-825.

    17. [17]

      [17] Y. Higa, M. Kawawbe, K. Nabae, et al., Kojic acid-absence of tumor-initiating activity in rat liver, and of carcinogenic and photo-genotoxic potential in mouse skin, J. Toxicol. Sci. 32 (2007) 143-159.

    18. [18]

      [18] P. Collery, F. Lechenault, A. Cazabat, et al., Inhibitory effects of gallium chloride and tris (8-quinolinolato) gallium Ⅲ on A549 human malignant cell line, Anticancer Res. 20 (2000) 955-958.

    19. [19]

      [19] F.C. Wehner, P.G. Thiel, S.J. Van Rensburg, I.P.C. Demasius, Mutagenicity to Salmonella typhimurium of some Aspergillus and Penicillium mycotoxins, Mutat. Res. 58 (1978) 193-203.

    20. [20]

      [20] D. Hudecova, M. Uher, J. Brtko, Halogenderivatives of kojic acid with antifungal effects, Biologia (Bratislava) 47 (1992) 483-488.

    21. [21]

      [21] A. Albert, S.D. Rubbo, R.J. Goldacre, B.G. Balfour, The influence of chemical constitution of antibacterial activity. A study of 8-hydroxyquinolin (oxine) and related compounds, Br. J. Exp. Pathol. XXVⅢ (1947) 69-87.

    22. [22]

      [22] El-R. Kenawy, Biologically active polymers IV. Synthesis and antimicrobial activity of polymers containing 8-hydroxyquinoline moiety, J. Appl. Polym. Sci. 82 (2001) 1364-1374.

    23. [23]

      [23] S. Asghari, M. Faraji-Najjarkolaee, M. Ahmadipour, Regioselective vinylation of kojic acid using acetylenic esters in the presence of triphenylphosphine or tertbutyl isocyanide, Monatsh. Chem. 141 (2010) 781-786.

    24. [24]

      [24] S. Asghari, A. Khabbazi Habibi, One pot three-component regioselective and diastereoselective synthesis of halogenated pyrido[2,1-b][1,3]oxazines, Tetrahedron 68 (2012) 8890-8898.

    25. [25]

      [25] R. Huisgen, M. Morikawa, K. Herbig, E. Brunn, 1.4-Dipolare cycloadditionen, Ⅱ. Dreikomponenten-reaktionen des isochinolins mit acetylendicarbonsäureester und verschiedenen dipolarophilen, Chem. Ber. 100 (1967) 1094-1106.

    26. [26]

      [26] V. Nair, S. Devipriya, S. Eringathodi, Efficient synthesis of [1,3]oxazino[2,3- a]quinoline derivatives by a novel 1,4-dipolar cycloaddition involving a quinoline- DMAD zwitterion and carbonyl compounds, Tetrahedron Lett. 48 (2007) 3667-3670.

    27. [27]

      [27] A.N. Pillai, B. Rema Devi, E. Suresh, V. Nair, An efficient multicomponent protocol for the stereoselective synthesis of oxazinobenzothiazole derivatives, Tetrahedron Lett. 48 (2007) 4391-4393.

    28. [28]

      [28] V. Nair, S. Devipriya, E. Suresh, Construction of heterocycles via 1,4-dipolar cycloaddition of quinoline-DMAD zwitterion with various dipolarophiles, Tetrahedron 64 (2008) 3567-3577.

    29. [29]

      [29] M. Adib, E. Sheibani, M. Mostofi, K. Ghanbary, H.R. Bijanzadeh, Efficient highly diastereoselective synthesis of 1,8a-dihydro-7H-imidazo[2,1-b][1,3]oxazines, Tetrahedron 62 (2006) 3435-3438.

    30. [30]

      [30] I. Yavari, A. Mirzaei, Z. Hossaini, S. Souri, Diastereoselective synthesis of fused[1,3]oxazines from ethyl pyruvate, activated acetylenes and N-heterocycles, Mol. Divers. 14 (2010) 343-347.

    31. [31]

      [31] I. Yavari, Z. Hossaini, S. Souri, S. Seyfi, Diastereoselective synthesis of fused[1,3]thiazolo[1,3]oxazins and [1,3]oxazino[2,3-b][1,3]benzothiazoles, Mol. Divers. 13 (2009) 439-443.

    32. [32]

      [32] I. Yavari, Z. Hossaini, M. Sabbaghan, M. Ghazanfarpour-Darjani, Reaction of Nheterocycles with acetylenedicarboxylates in the presence of N-alkylisatins or ninhydrin. Efficient synthesis of spiro compounds, Monatsh. Chem. 138 (2007) 677-681.

    33. [33]

      [33] I. Yavari, N. Hosseini, L. Moradi, An efficient synthesis of 2-cyano-2-phenyl-2, 11b-dihydro-[1,3]oxazino[2,3-a]isoquinolines by reaction of isoquinoline with electron-deficient acetylenes in the presence of benzoylcyanide, Monatsh. Chem. 139 (2008) 953-956.

    34. [34]

      [34] M.B. Teimouri, T. Abbasi, S. Ahmadian, M.R. Poor Heravi, R. Bazhrang, An efficient three-component protocol for the synthesis of novel spiro-oxazinobarbiturates, Tetrahedron 65 (2009) 8120-8124.

    35. [35]

      [35] A.A. Esmaeili, H. Vesalipoor, R. Hosseinabadi, et al., An efficient diastereoselective synthesis of spiro pyrido[2,1-b][1,3]oxazines via a novel pyridine-based threecomponent reaction, Tetrahedron Lett. 52 (2011) 4865-4867.

    36. [36]

      [36] M. Mohseni, H. Norouzi, J. Hamedi, A. Roohi, Screening of antibacterial producing actinomycetes from sediments of the Caspian Sea, Int. J. Mol. Cell Med. 2 (2013) 64-71.

    37. [37]

      [37] S. Asghari, S. Ramezani, M. Mohseni, Synthesis and antibacterial activity of ethyl 2-amino-6-methyl-5-oxo-4-aryl-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3-carboxylate, Chin. Chem. Lett. 25 (2014) 431-434.

  • 加载中
    1. [1]

      Xingyu ChenSihui ZhuangWeiyao YanZhengli ZengJianguo FengHongen CaoLei Yu . Synthesis, antibacterial evaluation, and safety assessment of Se@PLA as a potent bactericide against Xanthomonas oryzae pv. oryzae. Chinese Chemical Letters, 2024, 35(10): 109635-. doi: 10.1016/j.cclet.2024.109635

    2. [2]

      Yanye FanJingjing ChenBichun ChenJinyu BaiBowen YangFeng LiangLijing Fang . Design, synthesis and biological evaluation of Leu10-teixobactin analogues. Chinese Chemical Letters, 2025, 36(4): 110075-. doi: 10.1016/j.cclet.2024.110075

    3. [3]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    4. [4]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    5. [5]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    6. [6]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    7. [7]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    8. [8]

      Jing LIANGQian WANGJunfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177

    9. [9]

      Fuyun ChiMan ZhangYiman HanFukui ShenShijie PengBo SuYuanyuan HouGang Bai . Covalent modulation of mPGES1 activity via α,β-unsaturated aldehyde group: Implications for downregulating PGE2 expression and antipyretic response. Chinese Chemical Letters, 2025, 36(4): 109913-. doi: 10.1016/j.cclet.2024.109913

    10. [10]

      Haitao YinLiang MengLi LiJiamu XiaoLongrui LiangNannan HuangYansong ShiAngang ZhaoJingwen Hou . Polydopamine-modified biochar supported polylactic acid and zero-valent iron affects the functional microbial community structure for 1,1,1-trichloroethane removal in simulated groundwater. Chinese Chemical Letters, 2025, 36(1): 110313-. doi: 10.1016/j.cclet.2024.110313

    11. [11]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    12. [12]

      Jiao ChenZihan ZhangGuojin SunYudi ChengAihua WuZefan WangWenwen JiangFulin ChenXiuying XieJianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050

    13. [13]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    14. [14]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    15. [15]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    16. [16]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    17. [17]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    18. [18]

      Mianling YangMeehyein KimPeng Zhan . Modular miniaturized synthesis and in situ biological evaluation facilitate rapid discovery of potent MraY inhibitors as antibacterial agents. Chinese Chemical Letters, 2025, 36(2): 110455-. doi: 10.1016/j.cclet.2024.110455

    19. [19]

      Yue RenKang LiYi-Zi WangShao-Peng ZhaoShu-Min PanHaojie FuMengfan JingYaming WangFengyuan YangChuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468

    20. [20]

      Lingfeng ZhengChengyuan LvWenlin CaiQingze PanZuokai WangWenkai LiuJiangli FanXiaojun Peng . A single-component LED excited enone photoinitiator for colorless and transparent antibacterial film preparation. Chinese Chemical Letters, 2025, 36(4): 109922-. doi: 10.1016/j.cclet.2024.109922

Metrics
  • PDF Downloads(0)
  • Abstract views(712)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return