Citation:
Sakineh Asghari, Nastaran Malekian, Roya Esmaeilpour, Mohammad Ahmadipour, Mojtaba Mohseni. Three-component synthesis and antibacterial evaluation of some novel 1,2-dihydroisoquinoline derivatives[J]. Chinese Chemical Letters,
;2014, 25(11): 1441-1444.
doi:
10.1016/j.cclet.2014.05.047
-
Isoquinoline reacts with dialkyl acetylenedicarboxylates in the presence of kojic acid or 8-hydroxyquinoline to generate 1,2-dihydroisoquinoline derivatives. The simplicity, mild reaction conditions and high yields of products make it an interesting process compared to other approaches. The compounds have been analyzed for antibacterial activity against Gram negative and Gram positive bacteria. The results indicated that 1,2-dihydroisoquinolines derived from kojic acid are effective against all of the studied bacteria especially against Bacillus subtilis, while the products obtained from 8-hydroxyquinoline are active only against Gram positive bacteria.
-
-
-
[1]
[1] (a) C.P. Hansch, G. Sammes, J.B. Taylor, Comprehensive Medicinal Chemistry, Pergamon Press, Oxford, 1990; (b) K.W. Bentley, The Isoquinoline Alkaloide, Pergamon Press, London, 1965; (c) K.W. Bentley, b-Phenylethylamines and the isoquinoline alkaloids, Nat. Prob. Rep. 18 (2001) 148-170; (d) J.D. Scott, R.M. Williams, Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics, Chem. Rev. 102 (2002) 1669-1730.
-
[2]
[2] (a) B.E. Maryanoff, D.F. Mc Comsey, J.F. Gardocki, et al., Pyrroloisoquinoline antidepressants. 2. In-depth exploration of structure-activity relationships, J. Med. Chem. 30 (1987) 1433-1454; (b) K.L. Sorgi, C.A. Maryanoff, D.F. Mc Comsey, D.W. Graden, B.E. Maryanoff, Asymmetric induction in an enammonium-iminium rearrangement. Mechanistic insight via NMR, deuterium labeling, and reaction rate studies. Application to the stereoselective synthesis of pyrroloisoquinoline antidepressants, J. Am. Chem. Soc. 112 (1990) 3567-3579.
-
[3]
[3] E. Lukevics, I. Segal, A. Zablotskaya, S. Germane, Synthesis and neurotropic activity of novel quinoline derivatives, Molecules 2 (1997) 180-185.
-
[4]
[4] (a) L.F. Tietze, N. Rackehmann, I. Miller, Enantioselective total syntheses of the ipecacuanha alkaloid emetine, the alangium alkaloid aubulosine and a novel benzoquinolizidine alkaloid by using a domino process, Chem. Eur. J. 10 (2004) 2722-2731; (b) H.J. Knjlker, S. Agarwal, Total synthesis of the antitumor active pyrrolo[2,1- a]isoquinoline alkaloid (±)-crispine A, Tetrahedron Lett. 46 (2005) 1173-1175.
-
[5]
[5] J.S. Yadav, B.V. Subba Reddy, N.N. Yadav, M.K. Gupta, Three-component coupling reactions of isoquinolines, dimethyl acetylenedicarboxylate and indoles: a facile synthesis of 3-indolyl-1,2-dihydro-2-isoquinolinyl-2-butenedioate, Tetrahedron Lett. 49 (2008) 2815-2819.
-
[6]
[6] M. Nassiri, M.T. Maghsoodlou, R. Heydari, S.M. Habibi Khorassani, Novel multicomponent reactions involving isoquinoline or phenanthridine and activated acetylenic ester in the presence of heterocyclic NH or 1,3-dicarbonyl compounds, Mol. Divers. 12 (2008) 111-117.
-
[7]
[7] I. Yavari, M. Ghazanfarpour-Darjani, M. Sabbaghan, Z. Hossaini, Synthesis of dimethyl 1,2-dihydroisoquinolines through the reaction of isoquinoline and dimethyl acetylenedicarboxylate in the presence of amides, Tetrahedron Lett. 48 (2007) 3749-3751.
-
[8]
[8] J.S. Yadav, B.V. Subba Reddy, N.N. Yadav, M.K. Gupta, B. Sridhar, Gold(Ⅲ) chloridecatalyzed three-component reaction: a facile synthesis of alkynyl derivatives of 1,2-dihydroquinolines and isoquinolines, J. Org. Chem. 73 (2008) 6857-6859.
-
[9]
[9] A. Shaabani, A.H. Rezayan, A. Sarvary, M. Heidary, N. Seik Weng, Synthesis of highly stable unusual charge separated pyridinium, isoquinolinium, quinolinium, and Nmethylimidazolium tetronic acid zwitterions, Tetrahedron 65 (2009) 6063-6068.
-
[10]
[10] E.Y. Xia, J. Sun, R. Yao, C.G. Yan, Synthesis of zwitterionic salts via three component reactions of nitrogen-containing heterocycles, acetylenedicarboxylate and cyclic 1,3-dicarbonyl compounds, Tetrahedron 66 (2010) 3569-3574.
-
[11]
[11] M. Anary-Abbasinejad, H. Anaraki-Ardakani, M.H. Mosslemina, H.R. Khavasi, Isoquinoline-catalyzed reaction between 4-hydroxycoumarin or 4-hydroxy-6- methylpyran-1-one and dialkyl acetylene dicarboxylates: synthesis of coumarin and pyranopyrane derivative, J. Braz. Chem. Soc. 21 (2010) 319-323.
-
[12]
[12] I. Yavari, M. Piltan, L. Moradi, Synthesis of pyrrolo[2,1-a]isoquinolines from activated acetylenes, benzoylnitromethanes, and isoquinoline, Tetrahedron 65 (2009) 2067-2071.
-
[13]
[13] F. Khaleghi, L.B. Din, I. Jantan, W.A. Yaacob, M.A. Khalilzadeh, Facile synthesis of novel 1,4-benzoxazepin-2-one derivatives, Tetrahedron Lett.52 (2011) 7182-7184.
-
[14]
[14] J. Brtko, L. Rondahl, M. Fickova, et al., Kojic acid and its derivatives: history and present state of art, Cent. Eur. J. Public Health 12 (2004) S16-S20.
-
[15]
[15] R. Bentley, From miso, saké and shoyu to cosmetics: a century of science for kojic acid, Nat. Prod. Rep. 23 (2006) 1046-1062.
-
[16]
[16] A.Y. Shen, C.P. Chen, S.A. Roffler, Chelating agent possessing cytotoxicity and antimicrobial activity: 7-morpholinomethyl-8-hydroxyquinoline, Life Sci. 64 (1999) 813-825.
-
[17]
[17] Y. Higa, M. Kawawbe, K. Nabae, et al., Kojic acid-absence of tumor-initiating activity in rat liver, and of carcinogenic and photo-genotoxic potential in mouse skin, J. Toxicol. Sci. 32 (2007) 143-159.
-
[18]
[18] P. Collery, F. Lechenault, A. Cazabat, et al., Inhibitory effects of gallium chloride and tris (8-quinolinolato) gallium Ⅲ on A549 human malignant cell line, Anticancer Res. 20 (2000) 955-958.
-
[19]
[19] F.C. Wehner, P.G. Thiel, S.J. Van Rensburg, I.P.C. Demasius, Mutagenicity to Salmonella typhimurium of some Aspergillus and Penicillium mycotoxins, Mutat. Res. 58 (1978) 193-203.
-
[20]
[20] D. Hudecova, M. Uher, J. Brtko, Halogenderivatives of kojic acid with antifungal effects, Biologia (Bratislava) 47 (1992) 483-488.
-
[21]
[21] A. Albert, S.D. Rubbo, R.J. Goldacre, B.G. Balfour, The influence of chemical constitution of antibacterial activity. A study of 8-hydroxyquinolin (oxine) and related compounds, Br. J. Exp. Pathol. XXVⅢ (1947) 69-87.
-
[22]
[22] El-R. Kenawy, Biologically active polymers IV. Synthesis and antimicrobial activity of polymers containing 8-hydroxyquinoline moiety, J. Appl. Polym. Sci. 82 (2001) 1364-1374.
-
[23]
[23] S. Asghari, M. Faraji-Najjarkolaee, M. Ahmadipour, Regioselective vinylation of kojic acid using acetylenic esters in the presence of triphenylphosphine or tertbutyl isocyanide, Monatsh. Chem. 141 (2010) 781-786.
-
[24]
[24] S. Asghari, A. Khabbazi Habibi, One pot three-component regioselective and diastereoselective synthesis of halogenated pyrido[2,1-b][1,3]oxazines, Tetrahedron 68 (2012) 8890-8898.
-
[25]
[25] R. Huisgen, M. Morikawa, K. Herbig, E. Brunn, 1.4-Dipolare cycloadditionen, Ⅱ. Dreikomponenten-reaktionen des isochinolins mit acetylendicarbonsäureester und verschiedenen dipolarophilen, Chem. Ber. 100 (1967) 1094-1106.
-
[26]
[26] V. Nair, S. Devipriya, S. Eringathodi, Efficient synthesis of [1,3]oxazino[2,3- a]quinoline derivatives by a novel 1,4-dipolar cycloaddition involving a quinoline- DMAD zwitterion and carbonyl compounds, Tetrahedron Lett. 48 (2007) 3667-3670.
-
[27]
[27] A.N. Pillai, B. Rema Devi, E. Suresh, V. Nair, An efficient multicomponent protocol for the stereoselective synthesis of oxazinobenzothiazole derivatives, Tetrahedron Lett. 48 (2007) 4391-4393.
-
[28]
[28] V. Nair, S. Devipriya, E. Suresh, Construction of heterocycles via 1,4-dipolar cycloaddition of quinoline-DMAD zwitterion with various dipolarophiles, Tetrahedron 64 (2008) 3567-3577.
-
[29]
[29] M. Adib, E. Sheibani, M. Mostofi, K. Ghanbary, H.R. Bijanzadeh, Efficient highly diastereoselective synthesis of 1,8a-dihydro-7H-imidazo[2,1-b][1,3]oxazines, Tetrahedron 62 (2006) 3435-3438.
-
[30]
[30] I. Yavari, A. Mirzaei, Z. Hossaini, S. Souri, Diastereoselective synthesis of fused[1,3]oxazines from ethyl pyruvate, activated acetylenes and N-heterocycles, Mol. Divers. 14 (2010) 343-347.
-
[31]
[31] I. Yavari, Z. Hossaini, S. Souri, S. Seyfi, Diastereoselective synthesis of fused[1,3]thiazolo[1,3]oxazins and [1,3]oxazino[2,3-b][1,3]benzothiazoles, Mol. Divers. 13 (2009) 439-443.
-
[32]
[32] I. Yavari, Z. Hossaini, M. Sabbaghan, M. Ghazanfarpour-Darjani, Reaction of Nheterocycles with acetylenedicarboxylates in the presence of N-alkylisatins or ninhydrin. Efficient synthesis of spiro compounds, Monatsh. Chem. 138 (2007) 677-681.
-
[33]
[33] I. Yavari, N. Hosseini, L. Moradi, An efficient synthesis of 2-cyano-2-phenyl-2, 11b-dihydro-[1,3]oxazino[2,3-a]isoquinolines by reaction of isoquinoline with electron-deficient acetylenes in the presence of benzoylcyanide, Monatsh. Chem. 139 (2008) 953-956.
-
[34]
[34] M.B. Teimouri, T. Abbasi, S. Ahmadian, M.R. Poor Heravi, R. Bazhrang, An efficient three-component protocol for the synthesis of novel spiro-oxazinobarbiturates, Tetrahedron 65 (2009) 8120-8124.
-
[35]
[35] A.A. Esmaeili, H. Vesalipoor, R. Hosseinabadi, et al., An efficient diastereoselective synthesis of spiro pyrido[2,1-b][1,3]oxazines via a novel pyridine-based threecomponent reaction, Tetrahedron Lett. 52 (2011) 4865-4867.
-
[36]
[36] M. Mohseni, H. Norouzi, J. Hamedi, A. Roohi, Screening of antibacterial producing actinomycetes from sediments of the Caspian Sea, Int. J. Mol. Cell Med. 2 (2013) 64-71.
-
[37]
[37] S. Asghari, S. Ramezani, M. Mohseni, Synthesis and antibacterial activity of ethyl 2-amino-6-methyl-5-oxo-4-aryl-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3-carboxylate, Chin. Chem. Lett. 25 (2014) 431-434.
-
[1]
-
-
-
[1]
Xingyu Chen , Sihui Zhuang , Weiyao Yan , Zhengli Zeng , Jianguo Feng , Hongen Cao , Lei Yu . Synthesis, antibacterial evaluation, and safety assessment of Se@PLA as a potent bactericide against Xanthomonas oryzae pv. oryzae. Chinese Chemical Letters, 2024, 35(10): 109635-. doi: 10.1016/j.cclet.2024.109635
-
[2]
Yanye Fan , Jingjing Chen , Bichun Chen , Jinyu Bai , Bowen Yang , Feng Liang , Lijing Fang . Design, synthesis and biological evaluation of Leu10-teixobactin analogues. Chinese Chemical Letters, 2025, 36(4): 110075-. doi: 10.1016/j.cclet.2024.110075
-
[3]
Fangping Yang , Jin Shi , Yuansong Wei , Qing Gao , Jingrui Shen , Lichen Yin , Haoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746
-
[4]
Chong Liu , Ling Li , Jiahui Gao , Yanwei Li , Nazhen Zhang , Jing Zang , Cong Liu , Zhaopei Guo , Yanhui Li , Huayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118
-
[5]
Chao LIU , Jiang WU , Zhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153
-
[6]
Guoping Yang , Zhoufu Lin , Xize Zhang , Jiawei Cao , Xuejiao Chen , Yufeng Liu , Xiaoling Lin , Ke Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274
-
[7]
Yiyue Ding , Qiuxiang Zhang , Lei Zhang , Qilu Yao , Gang Feng , Zhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593
-
[8]
Jing LIANG , Qian WANG , Junfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177
-
[9]
Fuyun Chi , Man Zhang , Yiman Han , Fukui Shen , Shijie Peng , Bo Su , Yuanyuan Hou , Gang Bai . Covalent modulation of mPGES1 activity via α,β-unsaturated aldehyde group: Implications for downregulating PGE2 expression and antipyretic response. Chinese Chemical Letters, 2025, 36(4): 109913-. doi: 10.1016/j.cclet.2024.109913
-
[10]
Haitao Yin , Liang Meng , Li Li , Jiamu Xiao , Longrui Liang , Nannan Huang , Yansong Shi , Angang Zhao , Jingwen Hou . Polydopamine-modified biochar supported polylactic acid and zero-valent iron affects the functional microbial community structure for 1,1,1-trichloroethane removal in simulated groundwater. Chinese Chemical Letters, 2025, 36(1): 110313-. doi: 10.1016/j.cclet.2024.110313
-
[11]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[12]
Jiao Chen , Zihan Zhang , Guojin Sun , Yudi Cheng , Aihua Wu , Zefan Wang , Wenwen Jiang , Fulin Chen , Xiuying Xie , Jianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050
-
[13]
Runze Liu , Yankai Bian , Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250
-
[14]
Jinjie Lu , Qikai Liu , Yuting Zhang , Yi Zhou , Yanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406
-
[15]
Wei Su , Xiaoyan Luo , Peiyuan Li , Ying Zhang , Chenxiang Lin , Kang Wang , Jianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522
-
[16]
Qihang Wu , Hui Wen , Wenhai Lin , Tingting Sun , Zhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692
-
[17]
You Zhou , Li-Sheng Wang , Shuang-Gui Lei , Bo-Cheng Tang , Zhi-Cheng Yu , Xing Li , Yan-Dong Wu , Kai-Lu Zheng , An-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799
-
[18]
Mianling Yang , Meehyein Kim , Peng Zhan . Modular miniaturized synthesis and in situ biological evaluation facilitate rapid discovery of potent MraY inhibitors as antibacterial agents. Chinese Chemical Letters, 2025, 36(2): 110455-. doi: 10.1016/j.cclet.2024.110455
-
[19]
Yue Ren , Kang Li , Yi-Zi Wang , Shao-Peng Zhao , Shu-Min Pan , Haojie Fu , Mengfan Jing , Yaming Wang , Fengyuan Yang , Chuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468
-
[20]
Lingfeng Zheng , Chengyuan Lv , Wenlin Cai , Qingze Pan , Zuokai Wang , Wenkai Liu , Jiangli Fan , Xiaojun Peng . A single-component LED excited enone photoinitiator for colorless and transparent antibacterial film preparation. Chinese Chemical Letters, 2025, 36(4): 109922-. doi: 10.1016/j.cclet.2024.109922
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(712)
- HTML views(12)