Citation: Ting Pan, Yao-Jin Sun, Xiao-Lei Wang, Ting Shi, Yi-Lei Zhao. Infl uence of counteranions on catalytic ability of immobilized laccase in Cu-alginate matrices:Inhibition of chloride and activation of acetate[J]. Chinese Chemical Letters, ;2014, 25(7): 983-988. doi: 10.1016/j.cclet.2014.05.045 shu

Infl uence of counteranions on catalytic ability of immobilized laccase in Cu-alginate matrices:Inhibition of chloride and activation of acetate

  • Corresponding author: Yi-Lei Zhao, 
  • Received Date: 19 March 2014
    Available Online: 13 May 2014

    Fund Project: The first author gave special thanks to Mr. Yanbing Qi, Mr. Lanxuan Liu for discussions. This work is supported in part by the National High-Tech R&D Program of China "863" (No. 2012AA020403) (No. 2012AA020403)the National Basic Research Program of China "973" (Nos. 2012CB721005, 2013CB966802) (Nos. 2012CB721005, 2013CB966802) National Natural Science Foundation of China (Nos. 21377085, 21303101, 31121064, J1210047) (Nos. 21377085, 21303101, 31121064, J1210047) MOE New Century Excellent Talents in University (No. NCET-12-0354). (No. NCET-12-0354)

  • Laccase is a promising oxidase with environmental applications, such as lignin degradation and chlorophenol detoxification. Laccase immobilization can significantly improve physiochemical stability and reusability compared to the free enzymes. In this work, anion effect was investigated in entrapment of Cu-alginate matrix with five types of anions, including perchlorate (ClO4-), nitrate (NO3-), sulfate (SO42- ), chloride (Cl-), and acetate (CH3CO2-). Accordingly, chloride inhibition and acetate activation were detected in the o-tolidine kinetic experiments, while effects of the other three anions were much smaller. Such counteranion effects were also observed in the laccase-catalyzed biodegradation of 2,4-dichlorophenol. The results indicated that counteranions in the enzyme immobilization process are crucial for catalytic capacity, probably due to the competition with the carboxylate groups in alginate. Our results also imply that these anions might coordinate the copper cations in laccase.
  • 加载中
    1. [1]

      [1] N. Duran, E. Esposito, Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment, Appl. Catal. B: Environ. 28 (2000) 83-99.

    2. [2]

      [2] H. Claus, Laccase: structure, reactions, distribution, Micron 35 (2004) 93-96.

    3. [3]

      [3] S. Riva, Laccases: blue enzymes for green chemistry, Trends Biotechnol. 24 (2006) 219-226.

    4. [4]

      [4] Y.B. Qi, J.R. Zhu,Y.J. Sun, et al., Theoretical studies of the binding-affinity andreactivity between laccase and phenolic substrates, Chem. J. Chin. Univ. 35 (2014) 776-783.

    5. [5]

      [5] L. Quintanar, J.J. Yoon, C.P. Aznar, et al., Spectroscopic and electronic structure studies of the trinuclear Cu cluster active site of the multicopper oxidase laccase: nature of its coordination unsaturation, J. Am. Chem. Soc. 127 (2005) 13832-13845.

    6. [6]

      [6] K. Piontek, M. Antorini, T. Choinowski, Crystal structure of a laccase from the fungus Trametes versicolor at 1.90Åresolution containing a full complement of coppers, J. Biol. Chem. 277 (2002) 37663-37669.

    7. [7]

      [7] L. Quintana, C. Stoj, A.B. Taylor, et al., Shall we dance? How a multicopper oxidase chooses its electron transfer partner, Acc. Chem. Soc. 40 (2007) 445-452.

    8. [8]

      [8] O.V. Morozova, G.P. Shumakovich, S.V. Shleev, Y.I. Yaropolov, Laccase-mediator systems and their applications, Appl. Biochem. Microbiol. 43 (2007) 523-535.

    9. [9]

      [9] Y. Wang, D. Zhang, F.R. He, X.C. Chen, Immobilization of laccase by Cu2+ chelate affinity interaction on surface modified magnetic silica particles and its use for the removal of pentachlorophenol, Environ. Sci. Pollut. Res. 23 (2012) 197-200.

    10. [10]

      [10] C. Garcia-Galan, A. Berenguer-Murcia, R. Fernandez-Lafuente, R.C. Rodrigues, Potential of different enzyme immobilization strategies to improve enzyme performance, Adv. Synth. Catal. 353 (2011) 2885-2904.

    11. [11]

      [11] H.C. Flemming, J. Wingender, The biofilm matrix, Nat. Rev. Microbiol. 8 (2010) 623-633.

    12. [12]

      [12] Y. Dong, H.Z. Liu, L. Xu, et al., A novel CHS/ALG bi-layer composite membrane with sustained anti-microbial efficacy used as wound dressing, Chin. Chem. Lett. 21 (2010) 1011-1014.

    13. [13]

      [13] K.Y. Lee, D.J. Mooney, Alginate: properties and biomedical applications, Prog. Polym. Sci. 37 (2012) 106-126.

    14. [14]

      [14] K.N. Niladevi, P. Prema, Immobilization of laccase from Streptomyces psammoticus and its application in phenol removal using packed bed reactor, World J. Microbiol. Biotechnol. 24 (2008) 1215-1222.

    15. [15]

      [15] Y. Liu, Y. Tong, S. Wang, Q. Deng, A. Chen, Influence of different divalent metal ions on the properties of alginate microcapsules and microencapsulated cells, J. Sol. Gen. Sci. Technol. 67 (2013) 66-67.

    16. [16]

      [16] K.I. Draget, K. Steinsvag, E. Onsoyen, O. Smidsrod, Na-and K-alginate; effect on Cu2+-gelation, Carbohydr. Polym. 35 (1998) 1-6.

    17. [17]

      [17] I. Donati, J.C. Benegas, A. Cesaro, S. Paoletti, Specific interactions versus counterion condensation, Biomacromolecules 7 (2006) 1587-1597.

    18. [18]

      [18] F. Topuz, A. Henke, W. Richtering, J. Groll, Magnesium ions and alginate do form hydrogels: a rheological study, Soft Matter 8 (2012) 4877-4881.

    19. [19]

      [19] K. Mazur, R. Buchner,M. Bonn, J. Hunger, Hydration of sodium alginate in aqueous solution, Macromolecules 47 (2014) 771-776.

    20. [20]

      [20] H.B. Gray, B.G. Malmstrom, R.J.P. Williams, Copper coordination in blue proteins, J. Biol. Inorg. Chem. 5 (2000) 551-559.

    21. [21]

      [21] B.B. Lee, P. Ravindra, E.E. Chan, Size and shape of calcium alginate beads produced by extrusion dripping, Chem. Eng. Technol. 36 (2013) 1627-1642.

    22. [22]

      [22] A. Martinsen, G. Skjak-Braek, O. Smidsrod, Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads, Biotechnol. Bioeng. 33 (1989) 79-89.

    23. [23]

      [23] R. Miller, J. Kuglin, S. Gallagher, W.H. Flurkey, A spectrophotometric assay for laccase using o-tolidine, J. Food Biochem. 21 (1997) 445-459.

    24. [24]

      [24] R. Murugan, Solution to Michaelis-Menten enzyme kinetic equation via undetermined gauge functions: resolving the nonlinearity of Lineweaver-Burk plot, J. Chem. Phys. 117 (2002) 4178-4183.

    25. [25]

      [25] Y. Wang, X. Chen, J. Liu, F. He, R. Wang, Immobilization of laccase by Cu2+ chelate affinity interaction on surface-modified magnetic silica particles and its use for the removal of 2,4-dichlorophenol, Environ. Sci. Pollut. Res. 20 (2013) 6222-6231.

    26. [26]

      [26] J. Jia, S. Zhang, P. Wang, H. Wang, Degradation of high concentration 2,4-dichlorophenol by simultaneous photocatalytic-enzymatic process using TiO2/UV and laccase, J. Hazard. Mater. 205 (2012) 150-155.

    27. [27]

      [27] AWWA, Standard Methods for the Examination of Water and Wastewater, 19th ed., APHA, AWWA, WPCF, Washington, DC, 1995, pp. 185-190.

    28. [28]

      [28] A. Karaliota, O. Kretsi, C. Tzougraki, Synthesis and characterization of a binuclear coumarin-3-carboxylate copper(II) complex, J. Inorg. Biochem. 84 (2001) 33-37.

    29. [29]

      [29] S.K. Papageorgiou, E.P. Kouvelos, E.P. Favvas, et al., Metal-carboxylate interactions in metal-alginate complexes studied with FTIR spectroscopy, Carbohydr. Res. 345 (2010) 469-473.

    30. [30]

      [30] D. Filipiuk, L. Fuks, M. Majdan, Transition metal complexes with uronic acids, J. Mol. Struct. 744-747 (2005) 705-709.

    31. [31]

      [31] G.P. Lewis, Method using ortho-tolidine for the quantitative determination of haemoglobin in serum and urine, J. Clin. Pathol. 18 (1965) 235-239.

    32. [32]

      [32] J.A. Jacob, S. Naumov, N. Biswas, T. Mukherjee, S. Kapoor, Comparative study of ionization of benzidine and its derivatives by free electron transfer and oneelectron oxidation, J. Phys. Chem. C 111 (2007) 18397-18404.

  • 加载中
    1. [1]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    2. [2]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    3. [3]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    4. [4]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    5. [5]

      Jianing HeXiao WangZijian WangRuize JiangKe WangRui ZhangHuilin WangBaokang GengHongyi GaoShuyan SongHongjie Zhang . Investigation on Cu promotion effect on Ce-based solid solution-anchored Rh single atoms for three-way catalysis. Chinese Chemical Letters, 2025, 36(2): 109640-. doi: 10.1016/j.cclet.2024.109640

    6. [6]

      Rui LiRuijie LuLibin YangJianwen LiZige GuoQiquan YanMengjun LiYazhuo NiKeying ChenYaoyang LiBo XuMengzhen CuiZhan LiZhiying Zhao . Immobilization of chitosan nano-hydroxyapatite alendronate composite microspheres on polyetheretherketone surface to enhance osseointegration by inhibiting osteoclastogenesis and promoting osteogenesis. Chinese Chemical Letters, 2025, 36(4): 110242-. doi: 10.1016/j.cclet.2024.110242

    7. [7]

      Weiyu ChenZenghui LiChenguang ZhaoLisha ZhaJunfeng ShiDan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628

    8. [8]

      Chuang LIULichao SUNQingfeng ZHANG . Chiral inorganic nanocatalysts for electrochemical and enzyme-mimicked biosensing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 59-78. doi: 10.11862/CJIC.20240406

    9. [9]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

    10. [10]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

    11. [11]

      Lilin SongMengru SunYuqing SongFeng ZhangBei ZhaoHairong ZengJinhui ShiHuixin LiuShanshan ZhaoTian TianHeng YinGuangbo Ge . Rationally engineered IR-783 octanoate as an enzyme-activatable fluorogenic tool for functional imaging of hNotum in living systems. Chinese Chemical Letters, 2024, 35(11): 109601-. doi: 10.1016/j.cclet.2024.109601

    12. [12]

      Shuxin LiuJinjuan MaAiguo WangNan Zheng . Decomposable and sono-enzyme co-triggered poly(sonosensitizers) for precise and hypotoxic sonodynamic therapy. Chinese Chemical Letters, 2025, 36(4): 110032-. doi: 10.1016/j.cclet.2024.110032

    13. [13]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    14. [14]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    15. [15]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    16. [16]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    17. [17]

      Di ZHANGTianxiang XIEXu HEWanyu WEIQi FANJie QIAOGang JINNingbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329

    18. [18]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    19. [19]

      Min FuPan HeSen ZhouWenqiang LiuBo MaShiying ShangYaohao LiRuihan WangZhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434

    20. [20]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

Metrics
  • PDF Downloads(0)
  • Abstract views(634)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return