Citation: Jie He, Jia-Sheng Yu, Yan-Jie Hou, Zuo-Yi Zhu, Zhong-Ping Huang, Mu-Hua Wang, Nai-Fei Zhong, Yan Zhu. Determination of iminodiacetic acid in the glyphosate by ion chromatography[J]. Chinese Chemical Letters, ;2014, 25(10): 1392-1394. doi: 10.1016/j.cclet.2014.05.036 shu

Determination of iminodiacetic acid in the glyphosate by ion chromatography

  • Corresponding author: Yan Zhu, 
  • Received Date: 26 March 2014
    Available Online: 29 April 2014

    Fund Project: This research was financially supported by the National Important Project on Science Instrument (No. 2012YQ09022903) (No. 2012YQ09022903) Zhejiang Provincial Natural Science Foundation of China (No. Y4110532) (No. Y4110532)

  • In this paper, a simple method based on ion chromatography (IC) with conductivity detection was developed for the determination of iminodiacetic acid (IDA) in the herbicide of glyphosate. Under optimized chromatographic conditions, good linear relationship, sensitivity and reproducibility were obtained. The detection limit (LOD) for IDA obtained by injecting 25 μL of sample was 31.8 μg/L (S/ N = 3). Relative standard deviation (RSD) of repeated analysis for the peak areas was less than 1.53% (n = 6). A spiking study was performed with satisfactory recoveries between 92.8% and 103.6%. It was confirmed that this method could be applied in glyphosate products.
  • 加载中
    1. [1]

      [1] S. Chaberek Jr., A.E. Martell, Stability of metal chelates. I. Iminodiacetic and iminodipropionic acids, J. Am. Chem. Soc. 74 (1952) 5052-5056.

    2. [2]

      [2] R.C. Courtney, R.L. Gustafson, S. Chaberek Jr., A.E. Martell, Hydrolytic tendencies of metal chelate compounds. II. Effect of metal ion, J. Am. Chem. Soc. 80 (1958) 2121-2128.

    3. [3]

      [3] C.C. Wang, C.Y. Chen, C.Y. Chang, Synthesis of chelating resins with iminodiacetic acid and its wastewater treatment application, J. Appl. Polym. Sci. 84 (2002) 1353-1362.

    4. [4]

      [4] K.M. Harmatys, E.L. Cole, B.D. Smith, In vivo imaging of bone using a deep-red fluorescent molecular probe bearing multiple iminodiacetate groups, Mol. Pharmaceutics 10 (2013) 4263-4271.

    5. [5]

      [5] A. Yuchi, T. Sato, Y. Morimoto, H. Mizuno, H. Wada, Adsorption mechanism of trivalent metal ions on chelating resins containing iminodiacetic acid groups with reference to selectivity, Anal. Chem. 69 (1997) 2941-2944.

    6. [6]

      [6] Z. Rassi, C. Horva´ th, Metal chelate-interaction chromatography of proteins with iminodiacetic acid-bonded stationary phases on silica support, J. Chromatogr. A 359 (1986) 241-253.

    7. [7]

      [7] E. Sugrue, P. Nesterenko, B. Paull, Ion exchange properties of monolithic and particle type iminodiacetic acid modified silica, J. Sep. Sci. 27 (2004) 921-930.

    8. [8]

      [8] F. Alvaro, C. Claudio, F. Binyamin, L.K. Barry, High-performance immobilizedmetal affinity chromatography of proteins of iminodiacetic acid silica-based bonded phases, J. Chromatogr. A 371 (1986) 335-352.

    9. [9]

      [9] Z.Q. Liu, F.F. Li, F. Cheng, et al., A novel synthesis of iminodiacetic acid: biocatalysis by whole alcaligenes faecalis ZJB-09133 cells from iminodiacetonitrile, Biotechnol. Prog. 27 (2011) 698-705.

    10. [10]

      [10] L.B. Ni, R.H. Zhang, Q.X. Liu, et al., pH-and mol-ratio dependent formation of zinc(Ⅱ) coordination polymers with iminodiacetic acid: synthesis, spectroscopic, crystal structure and thermal studies, J. Solid State Chem. 182 (2009) 2698-2706.

    11. [11]

      [11] A.T. Woodburn, Glyphosate: production, pricing and use worldwide, Pest Manag. Sci. 56 (2000) 309-312.

    12. [12]

      [12] C.B. Warren, E.J. Malec, Quantitative determination of nitrilotriacetic acid and related aminopolycarboxylic acids in inland waters: analysis by gas chromatography, J. Chromatogr. 64 (1972) 219-237.

    13. [13]

      [13] S.N. Bhattacharyya, N.C. Saha, Spectrophotometric determination of iminodiacetic acid in presence of primary amino-acids, Talanta 23 (1976) 331-332.

    14. [14]

      [14] J.S. Ridlen, G.J. Klopf, T.A. Nieman, Determination of glyphosate and related compounds using HPLC with tris(2,2'-bipyridyl)ruthenium(Ⅱ) electrogenerated chemiluminescence detection, Anal. Chim. Acta 341 (1997) 195-204.

    15. [15]

      [15] H. Small, T.S. Stevens, W.S. Bauman, Novel ion exchange chromatographic method using conductimetric detection, Anal. Chem. 47 (1975) 1801-1809.

    16. [16]

      [16] P.E. Jackson, C.A. Pohl, Advances in stationary phase development in suppressed ion chromatography, Trends Anal. Chem. 16 (1997) 393-400.

    17. [17]

      [17] R. Saari-Nordhaus, L. Nair, J.M. Anderson, Dual-column techniques for the simultaneous analysis of anions and cations, J. Chromatogr. A 602 (1992) 127-133.

    18. [18]

      [18] D. Yan, G. Schwedt, Simultaneous ion chromatography of inorganic anions together with some organic anions and alkaline earth metal cations using chelating agents as eluents, J. Chromatogr. A 516 (1990) 383-393.

    19. [19]

      [19] Y. Zhu, F.F. Zhang, C.L. Tong, W.P. Liu, Determination of glyphosate by ion chromatography, J. Chromatogr. A 850 (1999) 297-301.

    20. [20]

      [20] W.A. Battaglin, M.T. Meyer, K.M. Kuivila, J.E. Dietze, Glyphosate and its degradation product AMPA occur frequently and widely in U.S. soils, surface water, ground water, and precipitation, J. Am. Water Resour. Assoc. 50 (2014) 275-290.

    21. [21]

      [21] L.J. Marek, W.C. Koskinen, Simplified analysis of glyphosate and aminomethyl-phosphonic acid in water, vegetation and soil by liquid chromatography-tandem mass spectrometry, Pest Manag. Sci. 70 (2014) 1158-1164.

    22. [22]

      [22] G.M. Xu, L. Zhou, D.Y. Zheng, et al., Process for preparation of glyphosate by iminodiacetic acid, Agrochemicals 46 (2007) 656-658.

    23. [23]

      [23] G.M. Dill, R.D. Sammons, P.C.C. Feng, et al., Glyphosate: Discovery Development, Applications, and Properties, in: V.K. Nandula (Ed.), Glyphosate Resistance in Crops and Weeds: History, Development, and Management, Wiley, Hoboken, New Jersey, 2010, pp. 19-20.

  • 加载中
    1. [1]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    2. [2]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    3. [3]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    4. [4]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    5. [5]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    6. [6]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    7. [7]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    8. [8]

      Zheyi LiXiaoyang LiangZitong QiuZimeng LiuSiyu WangYue ZhouNan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592

    9. [9]

      Yang LiXiaoxu LiuTianyi JiMan ZhangXueru YanMengjie YaoDawei ShengShaodong LiPeipei RenZexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551

    10. [10]

      Yuhan Wu Qing Zhao Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271

    11. [11]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    12. [12]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    13. [13]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    14. [14]

      Runjing XuXin GaoYa ChenXiaodong ChenLifeng Cui . Research status and prospect of rechargeable magnesium ion batteries cathode materials. Chinese Chemical Letters, 2024, 35(11): 109852-. doi: 10.1016/j.cclet.2024.109852

    15. [15]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    16. [16]

      Yanqiong WangYaqi HouFengwei HuoXu Hou . Fe3+ ion quantification with reusable bioinspired nanopores. Chinese Chemical Letters, 2025, 36(2): 110428-. doi: 10.1016/j.cclet.2024.110428

    17. [17]

      Jia-hui Li Jinkai Qiu Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381

    18. [18]

      Ajay Piriya Vijaya Kumar Saroja Yuhan Wu Yang Xu . Improving the electrocatalysts for conversion-type anodes of alkali-ion batteries. Chinese Journal of Structural Chemistry, 2025, 44(1): 100408-100408. doi: 10.1016/j.cjsc.2024.100408

    19. [19]

      Zhanheng YanWeiqing SuWeiwei XuQianhui MaoLisha XueHuanxin LiWuhua LiuXiu LiQiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217

    20. [20]

      Jing Guo . New electrolyte concept: Compact ion-pair aggregate electrolyte. Chinese Chemical Letters, 2025, 36(4): 110512-. doi: 10.1016/j.cclet.2024.110512

Metrics
  • PDF Downloads(0)
  • Abstract views(650)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return