Citation: Li-Qing Ma, Hao Chen, Yong-Min Guo, Bao-Zong Li, Yi Li. Preparation of single-handed helical phenolic resin nanofibers using a supramolecular templating method[J]. Chinese Chemical Letters, ;2014, 25(10): 1363-1366. doi: 10.1016/j.cclet.2014.05.035 shu

Preparation of single-handed helical phenolic resin nanofibers using a supramolecular templating method

  • Corresponding author: Bao-Zong Li, 
  • Received Date: 14 March 2014
    Available Online: 30 April 2014

    Fund Project: This work was supported by the Natural Science Foundation of Jiangsu Province (No. BK2011354) (No. BK2011354) the Priority Academic Program Development of Jiangsu High Education Institutions (PAPD, No. YX10900114) (PAPD, No. YX10900114)

  • Single-handed helical phenolic resin nanofibers were synthesized through a supramolecular templating approach using the supramolecular self-assemblies of a pair of chiral low-molecular-weight amphiphiles as the templates and 2,4-dihydroxybenzoic acid and formaldehyde as the precursors. The phenolic resin nanofibers were characterized using field-emission scanning electron microscopy, transmission electron microscopy and diffused reflection circular dichroism. The results indicated that the chirality of the supramolecular self-assemblies was successfully transferred to the phenolic resin nanofibers. The left-and right-handed helical phenolic resin nanofibers exhibited opposite optical activity.
  • 加载中
    1. [1]

      [1] J.H. Jung, Y. Ono, K. Hanabusa, S. Shinkai, Creation of both right-handed and lefthanded silica structures by sol-gel transcription of organogel fibers comprised of chiral diaminocyclohexane derivatives, J. Am. Chem. Soc. 122 (2000) 5008-5009.

    2. [2]

      [2] J.J. Xie, H.B. Qiu, S.A. Che, Handedness inversion of chiral amphiphilic molecular assemblies evidenced by supramolecular chiral imprinting in mesoporous silica assemblies, Chem. Eur. J. 18 (2012) 2559-2564.

    3. [3]

      [3] Y.G. Yang, M. Suzuki, H. Shirai, A. Kurose, K. Hanabusa, Nanofiberization of inner helical mesoporous silica using chiral gelator as template under a shear flow, Chem. Commun. 15 (2005) 2032-2034.

    4. [4]

      [4] A.M. Seddon, H.M. Patel, S.L. Burkettand, S. Mann, Chiral templating of silica-lipid lamellar mesophase with helical tubular architecture, Angew. Chem. Int. Ed. 41 (2002) 2988-2991.

    5. [5]

      [5] J.H. Jung, K. Yoshida, T. Shimizu, Creation of novel double-helical silica nanotubes using binary gel system, Langmuir 18 (2002) 8724-8727.

    6. [6]

      [6] F.W. Hou, L.M. Wu, Y.M. Guo, Y. Li, B.Z. Li, A chirality indicator for the walls and the surfaces of silica nanotubes, Chin. Chem. Lett. 24 (2013) 770-772.

    7. [7]

      [7] X.T. Zhang, J. Zhang, W.H. Song, Z.F. Liu, Controllable synthesis of conducting polypyrrole nanostructures, J. Phys. Chem. B 110 (2006) 1158-1165.

    8. [8]

      [8] C.X. Fan, H.B. Qiu, J.F. Ruan, et al., Formation of chiral mesopores in conducting polymers by chiral-lipid-ribbon templating and “seeding” route, Adv. Funct. Matter. 18 (2008) 2699-2707.

    9. [9]

      [9] T. Shiraki, A. Dawn, Y. Tsuchiya, T. Yamamoto, S. Shinkai, Unexpected chiral induction from achiral cationic polythiophene aggregates and its application to the sugar pattern recognition, Chem. Commun. 48 (2012) 7091-7093.

    10. [10]

      [10] L.A.P. Kane-Maguire, G.G. Wallace, Chiral conducting polymers, Chem. Soc. Rev. 39 (2010) 2545-2547.

    11. [11]

      [11] X.J. Meng, T. Yokoi, D.L. Lu, T. Tatsumi, Synthesis and characterization of chiral periodic mesoporous organosilicas, Angew. Chem. Int. Ed. 46 (2007) 7796-7798.

    12. [12]

      [12] P. Yuan, L.Z. Zhao, N. Liu, et al., Periodic mesoporous organosilicas with helical and concentric circular pore architectures, Chem. Eur. J. 15 (2009) 11319-11325.

    13. [13]

      [13] Y. Li, B.Z. Li, Z.J. Yan, et al., Preparation of chiral mesoporous silica nanotubes and nanoribbons using a dual-templating approach, Chem. Mater. 25 (2013) 307-312.

    14. [14]

      [14] Y. Meng, D. Gu, F.Q. Zhang, et al., Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation, Angew. Chem. Int. Ed. 44 (2005) 7053-7059.

    15. [15]

      [15] C.D. Liang, K.L. Hong, G.A. Guiochon, J.W. Mays, S. Dai, Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers, Angew. Chem. Int. Ed. 43 (2004) 5785-5789.

    16. [16]

      [16] C.D. Liang, S. Dai, Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction, J. Am. Chem. Soc. 128 (2006) 5316-5317.

    17. [17]

      [17] S. Tanaka, N. Nishiyama, Y. Egashira, K. Ueyama, Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite, Chem. Commun. (2005) 2125-2127.

    18. [18]

      [18] F.Q. Zhang, Y. Meng, D. Gu, et al., A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3d bicontinuous cubic structure, J. Am. Chem. Soc. 127 (2005) 13508-13509.

    19. [19]

      [19] Y.X. Zhang, X.J. Zhang, Effects of phenol formaldehyde resin on pore size and orderliness of mesoporous carbon, Chem. Ind. Eng. Prog. 9 (2010) 1700-1704.

    20. [20]

      [20] A.H. Lu, G.P. Hao, Q. Sun, Can carbon spheres be created through the stçber method? Angew. Chem. Int. Ed. 50 (2011) 9023-9025.

    21. [21]

      [21] Y. Li, S.B. Wang, M. Xiao, B.Z. Li, Y.G. Yang, Chirality of the 1,4-phenylene-silica nanoribbons at the nano and angstrom levels, Nanotechnology 24 (2013) 1-6.

    22. [22]

      [22] Y.G. Yang, M. Suzuki, H. Fukui, H. Shirai, K. Hanabusa, Preparation of helical mesoporous silica and hybrid silica nanofibers using hydrogelator, Chem. Mater. 18 (2006) 1324-1329.

    23. [23]

      [23] S. Valkama, A. Nykänen, H. Kosonen, et al., Hierarchical porosity in self-assembled polymers: post-modification of block copolymer-phenolic resin complexes by pyrolysis allows the control of micro-and mesoporosity, Adv. Funct. Mater. 17 (2007) 183-190.

  • 加载中
    1. [1]

      Jian WangBaohui WangPin MaYifei ZhangHonghong GongBiyun PengSen LiangYunchuan XieHailong Wang . Regulation of uniformity and electric field distribution achieved highly energy storage performance in PVDF-based nanocomposites via continuous gradient structure. Chinese Chemical Letters, 2025, 36(4): 109714-. doi: 10.1016/j.cclet.2024.109714

    2. [2]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    3. [3]

      Wenying CuiZhetong JinWentao FuChengshuo Shen . Flag-hinge-like highly luminescent chiral nanographenes with twist geometry. Chinese Chemical Letters, 2024, 35(11): 109667-. doi: 10.1016/j.cclet.2024.109667

    4. [4]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    5. [5]

      Teng-Yu HuangJunliang SunDe-Xian WangQi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758

    6. [6]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    7. [7]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    8. [8]

      Yiming Yang Lichao Sun Qingfeng Zhang . Plasmonic nanocrystals with intrinsic chirality: Biomolecule-directed synthesis and applications. Chinese Journal of Structural Chemistry, 2025, 44(1): 100467-100467. doi: 10.1016/j.cjsc.2024.100467

    9. [9]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    10. [10]

      Tengfei YangJingshuai XiaoXiao SunYan SongChaozheng He . Facilitating the polysulfides conversion kinetics by porous LaOCl nanofibers towards long-cycling lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 109691-. doi: 10.1016/j.cclet.2024.109691

    11. [11]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    12. [12]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    13. [13]

      Hongmei YuBaoxi ZhangMeiju LiuCheng XingGuorong HeLi ZhangNingbo GongYang LuGuanhua Du . Theoretical and experimental cocrystal screening of temozolomide with a series of phenolic acids, promising cocrystal coformers. Chinese Chemical Letters, 2024, 35(5): 109032-. doi: 10.1016/j.cclet.2023.109032

    14. [14]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    15. [15]

      Xiangjun ZhangXiaodi YangYan WangZhongping XuSisi YiTao GuoYue LiaoXiyu TangJianxiang ZhangRuibing Wang . A supramolecular nanoprodrug for prevention of gallstone formation. Chinese Chemical Letters, 2025, 36(2): 109854-. doi: 10.1016/j.cclet.2024.109854

    16. [16]

      Peng ZhouZiang JiangYang LiPeng XiaoFeixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467

    17. [17]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    18. [18]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    19. [19]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    20. [20]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

Metrics
  • PDF Downloads(0)
  • Abstract views(669)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return