Citation:
Li-Qing Ma, Hao Chen, Yong-Min Guo, Bao-Zong Li, Yi Li. Preparation of single-handed helical phenolic resin nanofibers using a supramolecular templating method[J]. Chinese Chemical Letters,
;2014, 25(10): 1363-1366.
doi:
10.1016/j.cclet.2014.05.035
-
Single-handed helical phenolic resin nanofibers were synthesized through a supramolecular templating approach using the supramolecular self-assemblies of a pair of chiral low-molecular-weight amphiphiles as the templates and 2,4-dihydroxybenzoic acid and formaldehyde as the precursors. The phenolic resin nanofibers were characterized using field-emission scanning electron microscopy, transmission electron microscopy and diffused reflection circular dichroism. The results indicated that the chirality of the supramolecular self-assemblies was successfully transferred to the phenolic resin nanofibers. The left-and right-handed helical phenolic resin nanofibers exhibited opposite optical activity.
-
Keywords:
- Supramolecular template,
- Chirality,
- Phenolic resins,
- Nanofibers
-
-
-
[1]
[1] J.H. Jung, Y. Ono, K. Hanabusa, S. Shinkai, Creation of both right-handed and lefthanded silica structures by sol-gel transcription of organogel fibers comprised of chiral diaminocyclohexane derivatives, J. Am. Chem. Soc. 122 (2000) 5008-5009.
-
[2]
[2] J.J. Xie, H.B. Qiu, S.A. Che, Handedness inversion of chiral amphiphilic molecular assemblies evidenced by supramolecular chiral imprinting in mesoporous silica assemblies, Chem. Eur. J. 18 (2012) 2559-2564.
-
[3]
[3] Y.G. Yang, M. Suzuki, H. Shirai, A. Kurose, K. Hanabusa, Nanofiberization of inner helical mesoporous silica using chiral gelator as template under a shear flow, Chem. Commun. 15 (2005) 2032-2034.
-
[4]
[4] A.M. Seddon, H.M. Patel, S.L. Burkettand, S. Mann, Chiral templating of silica-lipid lamellar mesophase with helical tubular architecture, Angew. Chem. Int. Ed. 41 (2002) 2988-2991.
-
[5]
[5] J.H. Jung, K. Yoshida, T. Shimizu, Creation of novel double-helical silica nanotubes using binary gel system, Langmuir 18 (2002) 8724-8727.
-
[6]
[6] F.W. Hou, L.M. Wu, Y.M. Guo, Y. Li, B.Z. Li, A chirality indicator for the walls and the surfaces of silica nanotubes, Chin. Chem. Lett. 24 (2013) 770-772.
-
[7]
[7] X.T. Zhang, J. Zhang, W.H. Song, Z.F. Liu, Controllable synthesis of conducting polypyrrole nanostructures, J. Phys. Chem. B 110 (2006) 1158-1165.
-
[8]
[8] C.X. Fan, H.B. Qiu, J.F. Ruan, et al., Formation of chiral mesopores in conducting polymers by chiral-lipid-ribbon templating and “seeding” route, Adv. Funct. Matter. 18 (2008) 2699-2707.
-
[9]
[9] T. Shiraki, A. Dawn, Y. Tsuchiya, T. Yamamoto, S. Shinkai, Unexpected chiral induction from achiral cationic polythiophene aggregates and its application to the sugar pattern recognition, Chem. Commun. 48 (2012) 7091-7093.
-
[10]
[10] L.A.P. Kane-Maguire, G.G. Wallace, Chiral conducting polymers, Chem. Soc. Rev. 39 (2010) 2545-2547.
-
[11]
[11] X.J. Meng, T. Yokoi, D.L. Lu, T. Tatsumi, Synthesis and characterization of chiral periodic mesoporous organosilicas, Angew. Chem. Int. Ed. 46 (2007) 7796-7798.
-
[12]
[12] P. Yuan, L.Z. Zhao, N. Liu, et al., Periodic mesoporous organosilicas with helical and concentric circular pore architectures, Chem. Eur. J. 15 (2009) 11319-11325.
-
[13]
[13] Y. Li, B.Z. Li, Z.J. Yan, et al., Preparation of chiral mesoporous silica nanotubes and nanoribbons using a dual-templating approach, Chem. Mater. 25 (2013) 307-312.
-
[14]
[14] Y. Meng, D. Gu, F.Q. Zhang, et al., Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation, Angew. Chem. Int. Ed. 44 (2005) 7053-7059.
-
[15]
[15] C.D. Liang, K.L. Hong, G.A. Guiochon, J.W. Mays, S. Dai, Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers, Angew. Chem. Int. Ed. 43 (2004) 5785-5789.
-
[16]
[16] C.D. Liang, S. Dai, Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction, J. Am. Chem. Soc. 128 (2006) 5316-5317.
-
[17]
[17] S. Tanaka, N. Nishiyama, Y. Egashira, K. Ueyama, Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite, Chem. Commun. (2005) 2125-2127.
-
[18]
[18] F.Q. Zhang, Y. Meng, D. Gu, et al., A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3d bicontinuous cubic structure, J. Am. Chem. Soc. 127 (2005) 13508-13509.
-
[19]
[19] Y.X. Zhang, X.J. Zhang, Effects of phenol formaldehyde resin on pore size and orderliness of mesoporous carbon, Chem. Ind. Eng. Prog. 9 (2010) 1700-1704.
-
[20]
[20] A.H. Lu, G.P. Hao, Q. Sun, Can carbon spheres be created through the stçber method? Angew. Chem. Int. Ed. 50 (2011) 9023-9025.
-
[21]
[21] Y. Li, S.B. Wang, M. Xiao, B.Z. Li, Y.G. Yang, Chirality of the 1,4-phenylene-silica nanoribbons at the nano and angstrom levels, Nanotechnology 24 (2013) 1-6.
-
[22]
[22] Y.G. Yang, M. Suzuki, H. Fukui, H. Shirai, K. Hanabusa, Preparation of helical mesoporous silica and hybrid silica nanofibers using hydrogelator, Chem. Mater. 18 (2006) 1324-1329.
-
[23]
[23] S. Valkama, A. Nykänen, H. Kosonen, et al., Hierarchical porosity in self-assembled polymers: post-modification of block copolymer-phenolic resin complexes by pyrolysis allows the control of micro-and mesoporosity, Adv. Funct. Mater. 17 (2007) 183-190.
-
[1]
-
-
-
[1]
Jian Wang , Baohui Wang , Pin Ma , Yifei Zhang , Honghong Gong , Biyun Peng , Sen Liang , Yunchuan Xie , Hailong Wang . Regulation of uniformity and electric field distribution achieved highly energy storage performance in PVDF-based nanocomposites via continuous gradient structure. Chinese Chemical Letters, 2025, 36(4): 109714-. doi: 10.1016/j.cclet.2024.109714
-
[2]
Zhao-Xia Lian , Xue-Zhi Wang , Chuang-Wei Zhou , Jiayu Li , Ming-De Li , Xiao-Ping Zhou , Dan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063
-
[3]
Wenying Cui , Zhetong Jin , Wentao Fu , Chengshuo Shen . Flag-hinge-like highly luminescent chiral nanographenes with twist geometry. Chinese Chemical Letters, 2024, 35(11): 109667-. doi: 10.1016/j.cclet.2024.109667
-
[4]
Genlin Sun , Yachun Luo , Zhihong Yan , Hongdeng Qiu , Weiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787
-
[5]
Teng-Yu Huang , Junliang Sun , De-Xian Wang , Qi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758
-
[6]
Yi Zhou , Wei Zhang , Rong Fu , Jiaxin Dong , Yuxuan Liu , Zihang Song , Han Han , Kang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865
-
[7]
Gang Lang , Jing Feng , Bo Feng , Junlan Hu , Zhiling Ran , Zhiting Zhou , Zhenju Jiang , Yunxiang He , Junling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113
-
[8]
Yiming Yang , Lichao Sun , Qingfeng Zhang . Plasmonic nanocrystals with intrinsic chirality: Biomolecule-directed synthesis and applications. Chinese Journal of Structural Chemistry, 2025, 44(1): 100467-100467. doi: 10.1016/j.cjsc.2024.100467
-
[9]
Qianqian Song , Yunting Zhang , Jianli Liang , Si Liu , Jian Zhu , Xingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797
-
[10]
Tengfei Yang , Jingshuai Xiao , Xiao Sun , Yan Song , Chaozheng He . Facilitating the polysulfides conversion kinetics by porous LaOCl nanofibers towards long-cycling lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 109691-. doi: 10.1016/j.cclet.2024.109691
-
[11]
Fanjun Kong , Yixin Ge , Shi Tao , Zhengqiu Yuan , Chen Lu , Zhida Han , Lianghao Yu , Bin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552
-
[12]
Hengying Xiang , Nanping Deng , Lu Gao , Wen Yu , Bowen Cheng , Weimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182
-
[13]
Hongmei Yu , Baoxi Zhang , Meiju Liu , Cheng Xing , Guorong He , Li Zhang , Ningbo Gong , Yang Lu , Guanhua Du . Theoretical and experimental cocrystal screening of temozolomide with a series of phenolic acids, promising cocrystal coformers. Chinese Chemical Letters, 2024, 35(5): 109032-. doi: 10.1016/j.cclet.2023.109032
-
[14]
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
-
[15]
Xiangjun Zhang , Xiaodi Yang , Yan Wang , Zhongping Xu , Sisi Yi , Tao Guo , Yue Liao , Xiyu Tang , Jianxiang Zhang , Ruibing Wang . A supramolecular nanoprodrug for prevention of gallstone formation. Chinese Chemical Letters, 2025, 36(2): 109854-. doi: 10.1016/j.cclet.2024.109854
-
[16]
Peng Zhou , Ziang Jiang , Yang Li , Peng Xiao , Feixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467
-
[17]
Rui Wang , Yang Liang , Julius Rebek Jr. , Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228
-
[18]
Xiaoman Dang , Zhiying Wu , Tangxin Xiao , Zhouyu Wang , Leyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208
-
[19]
Pengfei Zhang , Qingxue Ma , Zhiwei Jiang , Xiaohua Xu , Zhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361
-
[20]
Fei Yin , Erli Yang , Xue Ge , Qian Sun , Fan Mo , Guoqiu Wu , Yanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(669)
- HTML views(8)