Citation: Feng-Jiao Chen, Chang-Wang Shao, Min-Nan Zhao, Zhao-Sheng Bu, Yan Zhang, Xiao-Nan Dai, Guo-Wei Zhou. Controllable synthesis and photocatalytic activities of rod-shaped mesoporous titanosilicate composites with varied aspect ratios[J]. Chinese Chemical Letters, ;2014, 25(6): 962-966. doi: 10.1016/j.cclet.2014.05.034 shu

Controllable synthesis and photocatalytic activities of rod-shaped mesoporous titanosilicate composites with varied aspect ratios

  • Corresponding author: Guo-Wei Zhou, 
  • Received Date: 3 March 2014
    Available Online: 23 April 2014

    Fund Project: This work was supported by the National Natural Science Foundation of China (Nos. 20976100, 51372124) (Nos. 20976100, 51372124) the Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province (No. 201207) (Nos. ZR2010BM013, ZR2011BQ009)

  • Rod-shaped mesoporous titanosilicate composites (RMTSs) with controllable aspect ratios (ARs) were fabricated using cetyltrimethylammonium bromide (CTAB) and ammonium hydroxide (NH4OH) at a continuous stirring rate, resulting in ARs ranging from 1 to 5. Slowing the stirring rate or increasing the concentration of CTAB mainly impacted the length growth, whereas NH4OH affected the width growth. Photocatalytic activity studies revealed that the length of RMTSs played a more significant role than the width at lower ARs in their photocatalytic activity.
  • 加载中
    1. [1]

      [1] Y. Pu, G.L. Zhu, B.S. Ge, et al., Photocurrent generation by recombinant allophycocyanin trimer multilayer on TiO2 electrode, Chin. Chem. Lett. 24 (2013) 163-166.

    2. [2]

      [2] S. Abdolmohammadi, Simple route to indeno [1,2-b] quinoline derivatives via a coupling reaction catalyzed by TiO2 nanoparticles, Chin. Chem. Lett. 24 (2013) 318-320.

    3. [3]

      [3] W. Li, Z. Wu, J. Wang, A.A. Elzatahry, D. Zhao, A perspective on mesoporous TiO2 materials, Chem. Mater. 26 (2014) 289-298.

    4. [4]

      [4] T. Lin, X. Zhang, R. Li, T. Bai, S.Y. Yang, Synergistic catalysis of isolated Fe3+ and Fe2O3 on FeOx/HZSM-5 catalysts for Friedel-Crafts benzylation of benzene, Chin. Chem. Lett. 22 (2011) 639-642.

    5. [5]

      [5] N. Murakami, S. Katayama, M. Nakamura, T. Tsubota, T. Ohno, Dependence of photocatalytic activity on aspect ratio of shape-controlled rutile titanium (IV) oxide nanorods, J. Phys. Chem. C 115 (2010) 419-424.

    6. [6]

      [6] X.J. Wu, Y.Y. Jiang, D.S. Xu, A unique transformation route for synthesis of rodlike hollow mesoporous silica particles, J. Phys. Chem. C 115 (2011) 11342-11347.

    7. [7]

      [7] W. Li, Y.H. Deng, Z.X. Wu, et al., Hydrothermal etching assisted crystallization: a facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells, J. Am. Chem. Soc. 133 (2011) 15830-15833.

    8. [8]

      [8] W. Li, J.P. Yang, Z.X. Wu, et al., A versatile kinetics-controlled coating method to construct uniform porous TiO2 shells for multifunctional core-shell structures, J. Am. Chem. Soc. 134 (2012) 11864-11867.

    9. [9]

      [9] D.X. Liu, M.Z. Yates, Fabrication of size-tunable TiO2 tubes using rod-shaped calcite templates, Langmuir 23 (2007) 10333-10341.

    10. [10]

      [10] K. Zimny, C. Carteret, M. Stébé, J. Blin, Multitechnique investigation of mesoporous titanosilicate materials prepared from both the self-assembly and the liquid crystal mechanisms, J. Phys. Chem. C 115 (2011) 8684-8692.

    11. [11]

      [11] H. Jin, Z. Liu, T. Ohsuna, et al., Control of morphology and helicity of chiral mesoporous silica, Adv. Mater. 18 (2006) 593-596.

    12. [12]

      [12] C. Kresge, M. Leonowicz, W. Roth, J. Vartuli, J. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature 359 (1992) 710-712.

    13. [13]

      [13] Z.L. Yang, J.L. Li, C.L. Zhang, et al., Two-dimensional mesoporous materials: from fragile coatings to flexible membranes, Chin. Chem. Lett. 24 (2013) 89-92.

    14. [14]

      [14] Y. Liu, R.O. Claus, Blue light emitting nanosized TiO2 colloids, J. Am. Chem. Soc. 119 (1997) 5273-5274.

    15. [15]

      [15] G. Li, X. Zhao, Characterization and photocatalytic properties of titaniuμ-containing mesoporous SBA-15, Ind. Eng. Chem. Res. 45 (2006) 3569-3573.

    16. [16]

      [16] H.M. Abdelaal, Fabrication of hollow silica microspheres utilizing a hydrothermal approach, Chin. Chem. Lett. 25 (2014) 627-629.

    17. [17]

      [17] G.N. Shao, G. Elineema, D.V. Quang, et al., Two step synthesis of a mesoporous titania-silica composite from titanium oxychloride and sodium silicate, Powder Technol. 217 (2012) 489-496.

    18. [18]

      [18] N.S.M. Yusof, M.N. Khan, M. Ashokkumar, Characterization of the structural transitions in CTAB micelles using fluorescein isothiocyanate, J. Phys. Chem. C 116 (2012) 15019-15027.

    19. [19]

      [19] Z. Jin, X. Wang, X. Cui, Synthesis and morphological investigation of ordered SBA-15-type mesoporous silica with an amphiphilic triblock copolymer template under various conditions, Colloids Surf. A 316 (2008) 27-36.

    20. [20]

      [20] W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci. 26 (1968) 62-69.

    21. [21]

      [21] P. Horcajada, A. Ramila, J. Perez-Pariente, M. Vallet-Regi, Influence of pore size of MCM-41 matrices on drug delivery rate, Microporous Mesoporous Mater. 68 (2004) 105-109.

    22. [22]

      [22] M. Kruk, M. Jaroniec, A. Sayari, Adsorption study of surface and structural properties of MCM-41 materials of different pore sizes, J. Phys. Chem. B 101 (1997) 583-589.

    23. [23]

      [23] A.J. Wang, T. Kabe, Fine-tuning of pore size of MCM-41 by adjusting the initial pH of the synthesis mixture, Chem. Commun. (1999) 2067-2068.

    24. [24]

      [24] L. Coppola, R. Gianferri, I. Nicotera, C. Oliviero, G.A. Ranieri, Structural changes in CTAB/H2O mixtures using a rheological approach, Phys. Chem. Chem. Phys. 6 (2004) 2364-2372.

    25. [25]

      [25] N.C. Das, H. Cao, H. Kaiser, et al., Shape and size of highly concentrated micelles in CTAB/NaSal solutions by small angle neutron scattering (SANS), Langmuir 28 (2012) 11962-11968.

    26. [26]

      [26] T. Bellini, N.A. Clark, V. Degiorgio, F. Mantegazza, G. Natale, Light-scattering measurement of the nematic correlation length in a liquid crystal with quenched disorder, Phys. Rev. E 57 (1998) 2996-3006.

    27. [27]

      [27] H.J. Yun, H. Lee, J.B. Joo, W. Kim, J. Yi, Influence of aspect ratio of TiO2 nanorods on the photocatalytic decomposition of formic acid, J. Phys. Chem. C 113 (2009) 3050-3055.

  • 加载中
    1. [1]

      Yueying WangJianming XiongLinwei XinYuanyuan LiHe HuangWenjun Miao . Photosensitizer-synergized g-carbon nitride nanosheets with enhanced photocatalytic activity for eradicating drug-resistant bacteria and promoting wound healing. Chinese Chemical Letters, 2025, 36(4): 110003-. doi: 10.1016/j.cclet.2024.110003

    2. [2]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    3. [3]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    4. [4]

      Jiayi GuoLiangxiong LingQinwei LuYi ZhouXubiao LuoYanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380

    5. [5]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    6. [6]

      Ali DaiZhiguo ZhengLiusheng DuanJian WuWeiming Tan . Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals. Chinese Chemical Letters, 2025, 36(4): 110462-. doi: 10.1016/j.cclet.2024.110462

    7. [7]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    8. [8]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    9. [9]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    10. [10]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    11. [11]

      Chuyu HuangZhishan LiuLinping ZhaoZuxiao ChenRongrong ZhengXiaona RaoYuxuan WeiXin ChenShiying Li . Metal-coordinated oxidative stress amplifier to suppress tumor growth combined with M2 macrophage elimination. Chinese Chemical Letters, 2024, 35(12): 109696-. doi: 10.1016/j.cclet.2024.109696

    12. [12]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    13. [13]

      Jiayi LuYizhang LiHao JiangZhiwen ZhuFengru ZhengQiang Sun . Preparing sub-monolayer metals with continuous coverage spread for high-throughput growth of metal-organic frameworks. Chinese Chemical Letters, 2025, 36(3): 110394-. doi: 10.1016/j.cclet.2024.110394

    14. [14]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    15. [15]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    16. [16]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    17. [17]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    18. [18]

      Di ZHANGTianxiang XIEXu HEWanyu WEIQi FANJie QIAOGang JINNingbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329

    19. [19]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

    20. [20]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

Metrics
  • PDF Downloads(0)
  • Abstract views(730)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return