Citation: Xiao-Dong Xia, Tian-Lun Wang, Xiao-Yuan Yuan. Tuning plasmon absorption of unmodified silver nanoplates for sensitive and selective detection of copper ions by introduction of ascorbate[J]. Chinese Chemical Letters, ;2014, 25(10): 1403-1406. doi: 10.1016/j.cclet.2014.05.033 shu

Tuning plasmon absorption of unmodified silver nanoplates for sensitive and selective detection of copper ions by introduction of ascorbate

  • Corresponding author: Xiao-Dong Xia, 
  • Received Date: 24 February 2014
    Available Online: 29 April 2014

    Fund Project: This work is supported by the National Natural Science Foundation of China (No. 21375036) (No. 21375036)

  • Silver nanoplates as novel optical sensors for Cu2+ detection have been demonstrated. Silver nanoplates are synthesized via previous H2O2-NaBH4 cyclic oxidation-reduction reactions. With introduction of ascorbate as mild reductants, Cu2+ ions are reduced into Cu+ and the Cu+ is further reduced to Cu, which is deposited on the surface of the silver nanoplates. The deposition of the Cu on the surface of the silver nanoplates allows a significant red-shift of their plasmon absorption. Therefore, trace Cu2+ can be detected. The shift of the plasmon absorption wavelength of silver nanoplates is proportional to the Cu2+ concentration over a range of 40-340 μmol L-1 with a limit of detection of 9.0 μmol L-1. Moreover, such silver nanoplate-based optical sensors provide good selectivity for Cu2+ detection, and most other metal ions do not disturb its detection. Moreover, the practicality of the proposed sensor was tested. This Cu2+ assay is advantageous in its simplicity, selectivity, and cost-effectiveness.
  • 加载中
    1. [1]

      [1] M. Rycenga, C.M. Cobley, J. Zeng, et al., Controlling the synthesis and assembly of silver nanostructures for plasmonic applications, Chem. Rev. 111 (2011) 3669-3712.

    2. [2]

      [2] M.R. Jones, K.D. Osberg, R.J. Macfarlane, M.R. Langille, C.A. Mirkin, Templated techniques for the synthesis and assembly of plasmonic nanostructures, Chem. Rev. 111 (2011) 3736-3827.

    3. [3]

      [3] K.M. Mayer, J.H. Hafner, Localized surface plasmon resonance sensors, Chem. Rev. 111 (2011) 3828-3857.

    4. [4]

      [4] R. Jin, Y. Cao, C.A. Mirkin, et al., Photoinduced conversion of silver nanospheres to nanoprisms, Science 294 (2001) 1901-1903.

    5. [5]

      [5] L.J. Sherry, R. Jin, C.A. Mirkin, G.C. Schatz, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms, Nano Lett. 6 (2006) 2060-2065.

    6. [6]

      [6] M.G. Blaber, A.I. Henry, J.M. Bingham, G.C. Schatz, R.P. Van Duyne, LSPR imaging of silver triangular nanoprisms: correlating scattering with structure using electrodynamics for plasmon lifetime analysis, J. Phys. Chem. C 116 (2011) 393-403.

    7. [7]

      [7] X.Y. Zhang, A. Hu, T. Zhang, et al., Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties, ACS Nano 5 (2011) 9082-9092.

    8. [8]

      [8] C.M. Tsai, M.S. Hsu, J.C. Chen, C.L. Huang, Mechanistic study of shape evolution of silver nanoprisms in the presence of KSCN, J. Phys. Chem. C 116 (2011) 461-467.

    9. [9]

      [9] X.C. Jiang, Q.H. Zeng, A.B. Yu, Thiol-frozen shape evolution of triangular silver nanoplates, Langmuir 23 (2007) 2218-2223.

    10. [10]

      [10] X.Q. Zou, S.J. Dong, Surface-enhanced Raman scattering studies on aggregated silver nanoplates in aqueous solution, J. Phys. Chem. B 110 (2006) 21545-21550.

    11. [11]

      [11] S. Lin, M.M.K. Wong, P.K. Pat, et al., Cadmium sulfide silver nanoplate hybrid structure: synthesis and fluorescence enhancement, J. Phys. Chem. C 115 (2011) 21604-21609.

    12. [12]

      [12] X. Le Guével, F.Y. Wang, O. Stranik, et al., Synthesis, stabilization, and functionalization of silver nanoplates for biosensor applications, J. Phys. Chem. C 113 (2009) 16380-16386.

    13. [13]

      [13] K. Aslan, J.R. Lakowicz, C.D. Geddes, Rapid deposition of triangular silver nanoplates on planar surfaces: application to metal-enhanced fluorescence, J. Phys. Chem. B 109 (2005) 6247-6251.

    14. [14]

      [14] L. Lu, A. Kobayashi, K. Tawa, Y. Ozaki, Silver nanoplates with special shapes: controlled synthesis and their surface plasmon resonance and surface-enhanced Raman scattering properties, Chem. Mater. 18 (2006) 4894-4901.

    15. [15]

      [15] K.J. Barnham, A.I. Bush, Metals in Alzheimer’s and Parkinson’s diseases, Curr. Opin. Chem. Biol. 12 (2008) 222-228.

    16. [16]

      [16] M. Kumar, N. Kumar, V. Bhalla, P.R. Sharma, T. Kaur, Highly selective fluorescence turn-on chemodosimeter based on rhodamine for nanomolar detection of copper ions, Org. Lett. 14 (2011) 406-409.

    17. [17]

      [17] X. Zhang, X. Jing, T. Liu, et al., Dual-functional gadolinium-based copper(II) probe for selective magnetic resonance imaging and fluorescence sensing, Inorg. Chem. 51 (2012) 2325-2331.

    18. [18]

      [18] E. Ballesteros, D. Moreno, T. Go´ mez, et al., A new selective chromogenic and turnon fluorogenic probe for copper(II) in water-acetonitrile 1:1 solution, Org. Lett. 11 (2009) 1269-1272.

    19. [19]

      [19] B.C. Yin, B.C. Ye, W. Tan, H. Wang, C.C. Xie, An allosteric dual-DNAzyme unimolecular probe for colorimetric detection of copper(II), J. Am. Chem. Soc. 131 (2009) 14624-14625.

    20. [20]

      [20] Y.T. Su, G.Y. Lan, W.Y. Chen, H.T. Chang, Detection of copper ions through recovery of the fluorescence of DNA-templated copper/silver nanoclusters in the presence of mercaptopropionic acid, Anal. Chem. 82 (2010) 8566-8572.

    21. [21]

      [21] Y. Dong, R. Wang, G. Li, et al., Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions, Anal. Chem. 84 (2012) 6220-6224.

    22. [22]

      [22] T. Lou, L. Chen, Z. Chen, et al., Colorimetric detection of trace copper ions based on catalytic leaching of silver-coated gold nanoparticles, ACS Appl. Mater. Inter. 3 (2011) 4215-4220.

    23. [23]

      [23] J. Liu, Y. Lu, Colorimetric Cu2+ detection with a ligation DNAzyme and nanoparticles, Chem. Commun. (2007) 4872-4874.

    24. [24]

      [24] X.Y. Xu, W.L. Daniel, W. Wei, C.A. Mirkin, Colorimetric Cu2+ detection using DNAmodified gold-nanoparticle aggregates as probes and click chemistry, Small 6 (2010) 623-626.

    25. [25]

      [25] S.Q. Ye, X.H. Shi, W. Gu, Y.X. Zhang, Y.Z. Xian, A colorimetric sensor based on catechol-terminated mixed self-assembled monolayers modified gold nanoparticles for ultrasensitive detections of copper ions, Analyst 137 (2012) 3365-3371.

    26. [26]

      [26] Y.M. Guo, Z. Wang, W. Qu, H.W. Shao, X.Y. Jiang, Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles, Biosens. Bioelectron. 26 (2011) 4064-4069.

    27. [27]

      [27] Y.R. Ma, H.Y. Niu, X.L. Zhang, Y.Q. Cai, Colorimetric detection of copper ions in tap water during the synthesis of silver/dopamine nanoparticles, Chem. Commun. 47 (2011) 12643-12645.

    28. [28]

      [28] W. Yang, J.J. Gooding, Z. He, Q. Li, G. Chen, Fast colorimetric detection of copper ions using L-cysteine functionalized gold nanoparticles, J. Nanosci. Nanotechnol. 7 (2007) 712-716.

    29. [29]

      [29] Q. Zhang, N. Li, J. Goebl, Z. Lu, Y. Yin, A systematic study of the synthesis of silver nanoplates: is citrate a ‘‘magic’’ reagent? J. Am. Chem. Soc. 133 (2011) 18931-18939.

    30. [30]

      [30] A. Rotaru, S. Dutta, E. Jentzsch, K. Gothelf, A. Mokhir, Selective dsDNA-templated formation of copper nanoparticles in solution, Angew. Chem. Int. Ed. 49 (2010) 5665-5667.

    31. [31]

      [31] R. Jin, Y. Charles Cao, E. Hao, et al., Controlling anisotropic nanoparticle growth through plasmon excitation, Nature 425 (2003) 487-490.

    32. [32]

      [32] S. Link, Z.L. Wang, M.A. El-Sayed, Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition, J. Phys. Chem. B 103 (1999) 3529-3533.

  • 加载中
    1. [1]

      Zhaomin TangQian HeJianren ZhouShuang YanLi JiangYudong WangChenxing YaoHuangzhao WeiKeda YangJiajia Wang . Active-transporting of charge-reversal Cu(Ⅱ)-doped mesoporous silica nanoagents for antitumor chemo/chemodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109742-. doi: 10.1016/j.cclet.2024.109742

    2. [2]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    3. [3]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    4. [4]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    5. [5]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    6. [6]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    7. [7]

      Wenya Jiang Jianyu Wei Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371

    8. [8]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    9. [9]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    10. [10]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    11. [11]

      Jiayao Li Xinru Peng Shiwei Yin Changwei Wang Yirong Mo . Metastability of π-π stacking between the closed-shell ions of like charges. Chinese Journal of Structural Chemistry, 2024, 43(5): 100213-100213. doi: 10.1016/j.cjsc.2023.100213

    12. [12]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    13. [13]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    14. [14]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    15. [15]

      Han-Min WangYan-Chen LiLu-Lu SunMing-Ye TangJia LiuJiahao CaiLei DongJia LiYi ZangHai-Hao HanXiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603

    16. [16]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    17. [17]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    18. [18]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    19. [19]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    20. [20]

      Lu LiSuticha ChuntaXianzi ZhengHaisheng HeWei WuYi Luβ-Lactoglobulin stabilized lipid nanoparticles enhance oral absorption of insulin by slowing down lipolysis. Chinese Chemical Letters, 2024, 35(4): 108662-. doi: 10.1016/j.cclet.2023.108662

Metrics
  • PDF Downloads(0)
  • Abstract views(706)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return