Citation: Long Kang, Shi-Xiong Sun, Ling-Bin Kong, Jun-Wei Lang, Yong-Chun Luo. Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors[J]. Chinese Chemical Letters, ;2014, 25(6): 957-961. doi: 10.1016/j.cclet.2014.05.032 shu

Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors

  • Corresponding author: Ling-Bin Kong, 
  • Received Date: 17 February 2014
    Available Online: 22 April 2014

  • A new application ofmetal organic framework (MOF) as a pseudo-capacitive material for supercapacitors is investigated. To this end, a simple nickel-based MOF, formulated Ni3(btc)2•12H2O, is synthesized via a hydrothermal reaction. As an electro-active material, such nickel-based MOF exhibits superior pseudocapacitive behavior in KOH aqueous electrolyte with a high specific capacitance of 726 F g-1. Also, it displays good electrochemical stability with 94.6% of the initial capacitance over consecutive 1000 cycles. In addition, a simple asymmetric supercapacitor with a high energy density of 16.5 Wh kg-1 is successfully built using the nickel-based MOF as positive electrode and commercial activated carbon as negative electrode in KOH electrolyte.
  • 加载中
    1. [1]

      [1] M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104 (2004) 4245-4269.

    2. [2]

      [2] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat[42_TD$DIF]. Mater. 7 (2008) 845-854.

    3. [3]

      [3] S.H. Aboutalebi, A.T. Chidembo, M. Salari, K. Konstantinov, D. Wexler, Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors, Energy Environ. Sci. 4 (2011) 1855-1865.

    4. [4]

      [4] Z.S. Wu, D.W. Wang, W.C. Ren, et al., Anchoring Hydrous RuO2 on grapheme sheets for high-performance electrochemical capacitors, Adv. Funct. Mater. 20 (2010) 3595-3602.

    5. [5]

      [5] J.W. Lang, L.B. Kong, W.J. Wu, Y.C. Luo, L. Kang, Facile approach to prepare loosepacked NiO nano-flakes materials for supercapacitors, Chem. Commun. 35 (2008) 4213-4215.

    6. [6]

      [6] Y.W. Zhu, S. Murali, M.D. Stoller, et al., Carbon-based supercapacitors produced by activation of graphene, Science 332 (2011) 1537-1541.

    7. [7]

      [7] M.X. Liu, L.H. Gan, W. Xiong, et al., Partially graphitic micro-and mesoporous carbon microspheres for supercapacitors, Chin. Chem. Lett. 24 (2013) 1037-1040.

    8. [8]

      [8] X.B. Yan, Z.X. Tai, J.T. Chen, Q.J. Xue, Fabrication of carbon nanofiber-polyaniline composite flexible paper for supercapacitor, Nanoscale 3 (2011) 212-216.

    9. [9]

      [9] C. Moreno-Castilla, M.B. Dawidziuk, F. Carrasco-Marín, Z. Zapata-Benabithe, Surface characteristics and electrochemical capacitances of carbon aerogels obtained from resorcinol and pyrocatechol using boric and oxalic acids as polymerization catalysts, Carbon 49 (2011) 3808-3819.

    10. [10]

      [10] X. Zhao, B.T.T. Chu, B. Ballesteros, et al., Spray deposition of steam treated and functionalized single-walled and multi-walled carbon nanotube films for supercapacitors, Nanotechnology 20 (2009) 065605.

    11. [11]

      [11] W.W. Liu, X.B. Yan, J.W. Lang, Q.J. Xue, Electrochemical behavior of graphene nanosheets in alkylimidazolium tetrafluoroborate ionic liquid electrolytes: influences of organic solvents and the alkyl chains, J. Mater. Chem. 21 (2011) 13205-13212.

    12. [12]

      [12] T.P. Gujar, V.R. Shinde, C.D. Lokhande, W.Y. Kim, Spray deposited amorphous RuO2 for an effective use in electrochemical supercapacitor, Electrochem. Commun. 9 (2007) 504-510.

    13. [13]

      [13] M.W. Xu, L.B. Kong, W.J. Zhou, H.L. Li, Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins, J. Phys. Chem. C 111 (2007) 19141-19147.

    14. [14]

      [14] J.W. Lang, X.B. Yan, Q.J. Xue, Facile preparation and electrochemical characterization of cobalt oxide/multi-walled carbon nanotube composites for supercapacitors, J. Power Sources 196 (2011) 7841-7846.

    15. [15]

      [15] A.I. Inamdar, Y.S. Kim, S.M. Pawar, et al., Chemically grown, porous, nickel oxide thin-film for electrochemical supercapacitors, [43_ TD$D IFF]J. Power Sources 196 (2011) 2393-2397.

    16. [16]

      [16] W.J. Zhou, M.W. Xu, D.D. Zhao, C.L. Xu, H.L. Li, Electrodeposition and characterization of ordered mesoporous cobalt hydroxide films on different substrates for supercapacitors, Microporous Mesoporous Mater. 117 (2009) 55-60.

    17. [17]

      [17] G.W. Yang, C.L. Xu, H.L. Li, Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance, Chem. Commun. (2008) 6537-6539.

    18. [18]

      [18] J.J. Cai, L.B. Kong, J. Zhang, Y.C. Luo, L. Kang, A novel polyaniline/mesoporous carbon nano-composite electrode for asymmetric supercapacitor, Chin. Chem. Lett. 21 (2010) 1509-1512.

    19. [19]

      [19] D.P. Dubal, S.H. Lee, J.G. Kim, W.B. Kim, C.D. Lokhande, Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor, J. Mater. Chem. 12 (2012) 3044-3052.

    20. [20]

      [20] N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites, [45_TD$DIF]Chem. Rev. 112 (2012) 933-969.

    21. [21]

      [21] S.Q. Su, W. Chen, X.Z. Song, et al., Three unprecedented open frameworks based on a pyridyl-carboxylate: synthesis, structures and properties, [46_TD$DIF]CrystEngComm 14 (2012) 1681-1686.

    22. [22]

      [22] H.H. Wu, Q.H. Gong, D.H. Olson, J. Li, Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks, Chem. Rev. 112 (2012) 836-868.

    23. [23]

      [23] Y. Kobayashi, B. Jacobs, M.D. Allendorf, J.R. Long, Conductivity, doping, and redox chemistry of a microporous dithioleneobased metal-organic framework, Chem. Mater. 22 (2010) 4120-4122.

    24. [24]

      [24] J.N. Behera, D.M. D'Alessandro, N. Soheilnia, J.R. Long, Synthesis and characterization of ruthenium and iron-ruthenium Prussian blue analogues, Chem. Mater. 21 (2009) 1922-1926.

    25. [25]

      [25] R. Díaz, M.G. Orcajo, J.A. Botas, G. Calleja, J. Palma, Co8-MOF-5 as electrode for supercapacitors, Mater. Lett. 68 (2012) 126-128.

    26. [26]

      [26] D.Y. Lee, S.J. Yoon, N.K. Shrestha, et al., Unusual energy storage and charge retention on Co-based metal-organic-frameworks, Microporous Mesoporous Mater. 153 (2012) 163-165.

    27. [27]

      [27] A. Morozan, F. Jaouen, Metal organic frameworks for electrochemical applications, Energy Environ. Sci. 5 (2012) 9269-9290.

    28. [28]

      [28] O.M. Yaghi, H.L. Li, T.L. Groy, Construction of porous solids from hydrogen-bonded metal complexes of [48_TD$DIF][49_DIF]1,3,5-benzenetricarboxylic acid, J. Am. Chem. Soc. 118 (1996) 9096-9101.

    29. [29]

      [29] M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors, Science 335 (2012) 1326-1330.

    30. [30]

      [30] X. Sun, G.K. Wang, J.Y. Hwang, J. Lian, Porous nickel oxide nano-sheets for high performance pseudocapacitance materials, J. Mater. Chem. 21 (2011) 16581-16588.

    31. [31]

      [31] R. Kötz, M. Carlen, Principles and applications of electrochemical capacitors, Electrochim. Acta 45 (2000) 2483-2498.

    32. [32]

      [32] W.W. Liu, X.B. Yan, J.W. Lang, J.T. Chen, Q.J. Xue, Influences of the thickness of selfassembled grapheme multilayer films on the supercapacitive performance, Electrochim. Acta 60 (2012) 41-49.

  • 加载中
    1. [1]

      Shuangliang XieYuyue ChenQing HeLiang ChenJikun YangShiqing DengYimei ZhuHe Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871

    2. [2]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    3. [3]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    4. [4]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    5. [5]

      Jian WangBaohui WangPin MaYifei ZhangHonghong GongBiyun PengSen LiangYunchuan XieHailong Wang . Regulation of uniformity and electric field distribution achieved highly energy storage performance in PVDF-based nanocomposites via continuous gradient structure. Chinese Chemical Letters, 2025, 36(4): 109714-. doi: 10.1016/j.cclet.2024.109714

    6. [6]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    7. [7]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    8. [8]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    9. [9]

      Ning ZhangMengjie QinJiawen ZhuXuejing LouXiao TianWende MaYoumei WangMinghua LuZongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177

    10. [10]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    11. [11]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    12. [12]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    13. [13]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    14. [14]

      Ningning ZhaoYuyan LiangWenjie HuoXinyan ZhuZhangxing HeZekun ZhangYoutuo ZhangXianwen WuLei DaiJing ZhuLing WangQiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332

    15. [15]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    16. [16]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    17. [17]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    18. [18]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    19. [19]

      Lei ZhuHai-Ruo LiYi-Ning MaoRuiying LiuBo ZhangJing ChenWengui XuLibo ZhangCheng-Peng Li . A four-fold interpenetrated MOF for efficient perrhenate/pertechnetate removal from alkaline nuclear effluents. Chinese Chemical Letters, 2024, 35(12): 109921-. doi: 10.1016/j.cclet.2024.109921

    20. [20]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

Metrics
  • PDF Downloads(0)
  • Abstract views(644)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return