Citation:
Xin Zhang, Hua-Yan Yang, Xiao-Jing Zhao, Yu Wang, Nan-Feng Zheng. The effects of surface ligands and counter cations on the stability of anionic thiolated M12Ag32 (M=Au, Ag) nanoclusters[J]. Chinese Chemical Letters,
;2014, 25(6): 839-843.
doi:
10.1016/j.cclet.2014.05.027
-
The stabilities of [M12Ag32(SR)30]4- (M=Ag, Au and SR=SPhF2, SPhCF3, SPhF) clusters having the same structure but different surface ligands or counter cations were systematically studied. It was clearly revealed that a subtle structural change in the surface ligands or counter cations could significantly alter the overall stability of [M12Ag32(SR)30]4- although they all had an electronic structure of 18-electron superatom shell closure. SPhCF2 was found as a better surface ligand than SPhCF3 or SPhF to stabilize [M12Ag32(SR)30]4-. And the use of more bulky [(PPh3)2N]+ as the counter cations was revealed to bemore deleterious to the overall stability of [M12Ag32(SR)30]4- clusters than PPh4+. [Au12Ag32(SR)30]4- was muchmore stable than [Ag44(SR)30]4- with the same surface ligands and counter cations. An exceptional stability was observed on (PPh4)4[Au12Ag32(SPhCF2)30] which was stable in DMF for more than 8 days in air at 80℃. More research efforts are still needed to deeply understand why a small structural change could result in a significant change in the stability of noble metal nanoclusters.
-
Keywords:
- Nanoclusters,
- Stability,
- Ligand effect,
- Noble metal
-
-
-
[1]
[1] M.C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantuμ-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev. 104 (2003) 293-346.
-
[2]
[2] C.M. Niemeyer, Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science, Angew. Chem. Int. Ed. 40 (2001) 4128-4158.
-
[3]
[3] T. Tsukuda, Toward an atomic-level understanding of size-specific properties of protected and stabilized gold clusters, Bull. Chem. Soc. Jpn. 85 (2012) 151-168.
-
[4]
[4] N.F. Zheng, G.D. Stucky, A general synthetic strategy for oxide-supported metal nanoparticle catalysts, J. Am. Chem. Soc. 128 (2006) 14278-14280.
-
[5]
[5] A.C. Templeton, W.P. Wuelfing, R.W. Murray, Monolayer-protected cluster molecules, Acc. Chem. Res. 33 (1999) 27-36.
-
[6]
[6] D.A. Giljohann, D.S. Seferos, W.L. Daniel, et al., Gold nanoparticles for biology and medicine, Angew. Chem. Int. Ed. 49 (2010) 3280-3294.
-
[7]
[7] R.C. Jin, Quantum sized, thiolate-protected gold nanoclusters, Nanoscale 2 (2010) 343-362.
-
[8]
[8] P.D. Jadzinsky, G. Calero, C.J. Ackerson, D.A. Bushnell, R.D. Kornberg, Structure of a thiol monolayer-protected gold nanoparticle at 1.1 a resolution, Science 318 (2007) 430-433.
-
[9]
[9] M.Z. Zhu, C.M. Aikens, F.J. Hollander, G.C. Schatz, R. Jin, Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties, J. Am. Chem. Soc. 130 (2008) 5883-5885.
-
[10]
[10] M.W. Heaven, A. Dass, P.S. White, K.M. Holt, R.W. Murray, Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18], J. Am. Chem. Soc. 130 (2008) 3754-3755.
-
[11]
[11] H.Y. Yang, Y. Wang, H.Q. Huang, et al., All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures, Nat. Commun. 4 (2013), Article 2422.
-
[12]
[12] H.F. Qian, C. Liu, R.C. Jin, Controlled growth of molecularly pure Au25(SR)18 and Au38(SR)24 nanoclusters from the same polydispersed crude product, Sci. China Chem. 55 (2012) 2359-2365.
-
[13]
[13] M. Walter, J. Akola, O. Lopez-Acevedo, et al., A unified view of ligand-protected gold clusters as superatom complexes, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 9157-9162.
-
[14]
[14] Y. Negishi, K. Munakata, W. Ohgake, K. Nobusada, Effect of copper doping on electronic structure, geometric structure, and stability of thiolate-protected Au25 nanoclusters, J. Phys. Chem. Lett. 3 (2012) 2209-2214.
-
[15]
[15] M.A. Tofanelli, C.J. Ackerson, Superatom electron configuration predicts thermal stability of Au25(SR)18 nanoclusters, J. Am. Chem. Soc. 134 (2012) 16937-16940.
-
[16]
[16] X. Chen, M. Strange, H. Häkkinen, Nonmagnetic and magnetic thiolate-protected Au25 superatoms on Cu(111), Ag(111), and Au(111) surfaces, Phys. Rev. B 85 (2012) 085422.
-
[17]
[17] H. Häkkinen, Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts, Chem. Soc. Rev. 37 (2008) 1847-1859.
-
[18]
[18] S. Knoppe, S. Malola, L. Lehtovaara, T. Bürgi, H. Häkkinen, Electronic structure and optical properties of the thiolate-protected Au28(SMe)20 cluster, J. Phys. Chem. A 117 (2013) 10526-10533.
-
[19]
[19] E.B. Guidez, V. Makinen, H. Häkkinen, C.M. Aikens, Effects of silver doping on the geometric and electronic structure and optical absorption spectra of the Au25-nAgn(SH)18- (n=1,2, 4, 6, 8, 10, 12) bimetallic nanoclusters, J. Phys. Chem. C 116 (2012) 20617-20624.
-
[20]
[20] R. Guo, R.W. Murray, Substituent effects on redox potentials and optical gap energies of molecule-like Au38(SPhX)24 nanoparticles, J. Am. Chem. Soc. 127 (2005) 12140-12143.
-
[21]
[21] F. Chen, R.L. Johnston, Energetic, electronic, and thermal effects on structural properties of Ag-Au nanoalloys, ACS Nano 2 (2007) 165-175.
-
[22]
[22] W. Kurashige, M. Yamaguchi, K. Nobusada, Y. Negishi, Ligand-induced stability of gold nanoclusters: thiolate versus selenolate, J. Phys. Chem. Lett. 3 (2012) 2649-2652.
-
[23]
[23] J. Jung, S. Kang, Y.K. Han, Ligand effects on the stability of thiol-stabilized gold nanoclusters: Au25(SR)18-, Au38(SR)24, and Au102(SR)44, Nanoscale 4 (2012) 4206-4210.
-
[24]
[24] Y. Negishi, W. Kurashige, Y. Niihori, T. Iwasa, K. Nobusada, Isolation, structure, and stability of a dodecanethiolate-protected Pd1Au24 cluster, Phys. Chem. Chem. Phys. 12 (2010) 6219-6225.
-
[25]
[25] D.E. Jiang, S. Dai, From superatomic Au25(SR)18- to superatomic M@Au24(SR)18q core-shell clusters, Inorg. Chem. 48 (2009) 2720-2722.
-
[26]
[26] S.L. Christensen, M.A. MacDonald, A. Chatt, et al., Local structure, and electronic properties of Au24Pt(SR)18 nanoclusters, J. Phys. Chem. C 116 (2012) 26932-26937.
-
[1]
-
-
-
[1]
Luyao Lu , Chen Zhu , Fei Li , Pu Wang , Xi Kang , Yong Pei , Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411
-
[2]
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
-
[3]
Shenglan Zhou , Haijian Li , Hongyi Gao , Ang Li , Tian Li , Shanshan Cheng , Jingjing Wang , Jitti Kasemchainan , Jianhua Yi , Fengqi Zhao , Wengang Qu . Recent advances in metal-loaded MOFs photocatalysts: From single atom, cluster to nanoparticle. Chinese Chemical Letters, 2025, 36(1): 110142-. doi: 10.1016/j.cclet.2024.110142
-
[4]
He Yao , Wenhao Ji , Yi Feng , Chunbo Qian , Chengguang Yue , Yue Wang , Shouying Huang , Mei-Yan Wang , Xinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076
-
[5]
Rui Liu , Yue Yu , Lu Deng , Maoxia Xu , Haorong Ren , Wenjie Luo , Xudong Cai , Zhenyu Li , Jingyu Chen , Hua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545
-
[6]
Jingyuan Yang , Xinyu Tian , Liuzhong Yuan , Yu Liu , Yue Wang , Chuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745
-
[7]
Ting Wang , Xin Yu , Yaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320
-
[8]
Qiyan Wu , Ruixin Zhou , Zhangyi Yao , Tanyuan Wang , Qing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416
-
[9]
Xinpin Pan , Yongjian Cui , Zhe Wang , Bowen Li , Hailong Wang , Jian Hao , Feng Li , Jing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567
-
[10]
Hongliang Zeng , Yuan Ji , Jinfeng Wen , Xu Li , Tingting Zheng , Qiu Jiang , Chuan Xia . Pt nanocluster-catalyzed hydrogen evolution reaction: Recent advances and future outlook. Chinese Chemical Letters, 2025, 36(3): 109686-. doi: 10.1016/j.cclet.2024.109686
-
[11]
Hongmei Yu , Baoxi Zhang , Meiju Liu , Cheng Xing , Guorong He , Li Zhang , Ningbo Gong , Yang Lu , Guanhua Du . Theoretical and experimental cocrystal screening of temozolomide with a series of phenolic acids, promising cocrystal coformers. Chinese Chemical Letters, 2024, 35(5): 109032-. doi: 10.1016/j.cclet.2023.109032
-
[12]
Wenxiang Ma , Xinyu He , Tianyi Chen , De-Li Ma , Hongzheng Chen , Chang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099
-
[13]
Liang Ming , Dan Liu , Qiyue Luo , Chaochao Wei , Chen Liu , Ziling Jiang , Zhongkai Wu , Lin Li , Long Zhang , Shijie Cheng , Chuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387
-
[14]
Chenghao Ge , Peng Wang , Pei Yuan , Tai Wu , Rongjun Zhao , Rong Huang , Lin Xie , Yong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352
-
[15]
Yan-Kai Zhang , Yong-Zheng Zhang , Chun-Xiao Jia , Fang Wang , Xiuling Zhang , Yuhang Wu , Zhongmin Liu , Hui Hu , Da-Shuai Zhang , Longlong Geng , Jing Xu , Hongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756
-
[16]
Jinqiang Gao , Haifeng Yuan , Xinjuan Du , Feng Dong , Yu Zhou , Shengnan Na , Yanpeng Chen , Mingyu Hu , Mei Hong , Shihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232
-
[17]
Rongjun Zhao , Tai Wu , Yong Hua , Yude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587
-
[18]
Guilong Li , Wenbo Ma , Jialing Zhou , Caiqin Wu , Chenling Yao , Huan Zeng , Jian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449
-
[19]
Shunyu Wang , Yanan Zhu , Yang Zhao , Wanli Nie , Hong Meng . Steric effects and electronic manipulation of multiple donors on S0/S1 transition of Dn-A emitters. Chinese Chemical Letters, 2025, 36(4): 110555-. doi: 10.1016/j.cclet.2024.110555
-
[20]
Ziyi Liu , Xunying Liu , Lubing Qin , Haozheng Chen , Ruikai Li , Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(699)
- HTML views(33)