Citation: Hui-Jing Li, Dong-Hui Luo, Qin-Xi Wu, Chun-Yang Dai, Zhi-Lun Shen, Yan-Chao Wu. Bi(OTf)3-catalyzed tandem reaction of naphthols with β,γ-unsaturated α-ketoesters. Effi cient synthesis of functionalized 4H-chromenes[J]. Chinese Chemical Letters, ;2014, 25(9): 1235-1239. doi: 10.1016/j.cclet.2014.05.023 shu

Bi(OTf)3-catalyzed tandem reaction of naphthols with β,γ-unsaturated α-ketoesters. Effi cient synthesis of functionalized 4H-chromenes

  • Corresponding author: Hui-Jing Li,  Yan-Chao Wu, 
  • Received Date: 18 February 2014
    Available Online: 9 May 2014

    Fund Project: the Natural Science Foundation of Shandong Province (No. ZR2012BM002) (Nos. 2011DXGJ13, 2012DXGJ02)

  • An efficient synthesis of functionalized 4H-chromenes by the tandem reaction of β,γ-unsaturated α-ketoesters with 2-naphthols, 1-naphthols, and 1,3-dihydroxynaphthalenes has been accomplished with high selectivity and excellent yields in the presence of a catalytic amount of bismuth triflate [Bi(OTf)3, 5 mol%] under mild conditions. The functionalized 4H-chromene synthesis and our previous 2H-chromene hemiacetal synthesis could complement each other to enrich reaction diversity.
  • 加载中
    1. [1]

      [1] V. Jeso, K.C. Nicolaou, Total synthesis of tovophyllin B, Tetrahedron Lett. 50 (2009) 1161-1163.

    2. [2]

      [2] T. Symeonidis, M. Chamilos, D.J. Hadjipavlou-Litina, L. Enache, M.T. Flavin, Synthesis of hydroxycoumarins and hydroxybenzo[f]-or [h]coumarins as lipid peroxidation inhibitors, Bioorg. Med. Chem. Lett. 19 (2009) 1139-1142.

    3. [3]

      [3] Z.Q. Xu, K. Pupek, W.J. Suling, et al., Pyranocoumarin, a novel anti-TB pharmacophore: synthesis and biological evaluation against mycobacterium tuberculosis, Bioorg, Med. Chem. 14 (2006) 4610-4626.

    4. [4]

      [4] C.B. Sangani, N.M. Shah, M.P. Patel, R.G. Patel, Microwave-assisted synthesis of novel 4H-chromene derivatives bearing 2-aryloxyquinoline and their antimicrobial activity assessment, Med. Chem. Res. 22 (2013) 3831-3842.

    5. [5]

      [5] T. Narender, S. Gupta, A convenient and biogenetic type synthesis of few naturally occurring chromeno dihydrochalcones and their in vitro antileishmanial activity, Bioorg. Med. Chem. Lett. 14 (2004) 3913-3916.

    6. [6]

      [6] A. Martínez-Grau, J.L. Marco, Friedländer reaction on 2-amino-3-cyano-4H-pyrans: synthesis of derivatives of 4H-pyran [2,3-b] quinoline, new tacrine analogues, Bioorg. Med. Chem. Lett. 7 (1997) 3165-3170.

    7. [7]

      [7] N.R. Kamdar, D.D. Haveliwala, P.T. Mistry, S.K. Patel, Synthesis and evaluation of in vitro antitubercular activity and antimicrobial activity of some novel 4H-chromeno[ 2,3-d] pyrimidine via 2-amino-4-phenyl-4H-chromene-3-carbonitriles, Med. Chem. Res. 20 (2011) 854-864.

    8. [8]

      [8] H. Aryapour, M. Mahdavi, S.R. Mohebbi, et al., Anti-proliferative and apoptotic effects of the derivatives from 4-aryl-4H-chromene family on human leukemia K562 Cells, Arch. Pharm. Res. 35 (2012) 1573-1582.

    9. [9]

      [9] S.G. Das, D.L. Hermanson, N. Bleeker, et al., Ethyl 2-amino-6-(3,5-dimethoxyphenyl)-4-(2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (CXL017): a novel scaffold that resensitizes multidrug resistant leukemia cells to chemotherapy, ACS Chem. Biol. 8 (2013) 327-335.

    10. [10]

      [10] (a) J. Fan, Z. Wang, Facile construction of functionalized 4H-chromene via tandem benzylation and cyclization, Chem. Commun. (2008) 5381-5383; (b) S. Gao, C.H. Tsai, C. Tseng, C.F. Yao, Fluoride ion catalyzed multicomponent reactions for efficient synthesis of 4H-chromene and N-arylquinoline derivatives in aqueous media, Tetrahedron 64 (2008) 9143-9149; (c) K. Kumaravel, G. Vasuki, Four-component catalyst-free reaction in water: combinatorial library synthesis of novel 2-amino-4-(5-hydroxy-3-methyl-1Hpyrazol-4-yl)-4H-chromene-3-carbonitrile derivatives, Green Chem. 11 (2009) 1945-1947; (d) M.N. Elinson, A.I. Ilovaisky, V.M. Merkulova, et al., Solvent-free cascade reaction: direct multicomponent assembling of 2-amino-4H-chromene scaffold from salicylaldehyde, malononitrile or cyanoacetate and nitroalkanes, Tetrahedron 66 (2010) 4043-4048; (e) M.R. Naimi-Jamal, S. Mashkouri, A. Sharifi, An efficient, multicomponent approach for solvent-free synthesis of 2-amino-4H-chromene scaffold, Mol. Divers. 14 (2010) 473-477; (f) M. Boominathan, M. Nagaraj, S. Muthusubramanian, R.V. Krishnakumar, Efficient atom economical one-pot multicomponent synthesis of densely functionalized 4H-chromene derivatives, Tetrahedron 67 (2011) 6057-6064; (g) S.R. Kolla, Y.R. Lee, Ca(OH)2-mediated efficient synthesis of 2-amino-5-hydroxy-4H-chromene derivatives with various substituents, Tetrahedron 67 (2011) 8271-8275; (h) Z.Y. Du, W.Y. Siau, J. Wang, Enantioselective organocatalytic synthesis of medicinally privileged 2-amino-4H-chromene-3-carbonitriles via a cascade process, Tetrahedron Lett. 52 (2011) 6137-6141; (i) M. Gyuris, R. Madácsi, L.G. Puskás, et al., Synthesis of 2-amino-3-cyano-4Hchromene-4-carboxamide derivatives by an isocyanide-based domino conjugate addition/O-trapping rearrangement sequence, Eur. J. Org. Chem. (2011) 848-851; (j) Q. Ren,W.Y. Siau, Z.Y. Du, K. Zhang, J.Wang, Expeditious assembly of a 2-amino-4H-chromene skeleton by using an enantioselective mannich intramolecular ring cyclization-tautomerization cascade sequence, Chem. Eur. J. 17 (2011) 7781-7785; (k) H. Dou, S. Gao, Z. Fu, S. Liu, Improved synthesis of substituted 2-amino-4Hchromene derivatives catalyzed by anewamino-functionalized basic ionic liquid 1-(2-aminoethyl)-3-methylimidazolium imidazolide, Chin. J. Org. Chem. 31 (2011) 1056-1063; (l) Z.H. Dong, X.H. Liu, J.H. Feng, et al., Efficient asymmetric synthesis of 4Hchromene derivatives through a tandem michael addition-cyclization reaction catalyzed by a salen-cobalt(II) complex, Eur. J. Org. Chem. (2011) 137-142; (m) B. Mohtat, H. Djahaniani, I. Yavari, M.G. Dehbalaei, S.A. Jam, Synthesis of 4Hchromene derivatives by reaction between alkyl isocyanides and dialkyl acetylenedicarboxylate in the presence of 6-hydroxyquinoline, Chin. Chem. Lett. 22 (2011) 771-773.

    11. [11]

      [11] (a) W.J. Xue, Q. Li, F.F. Gao, et al., Diversity-oriented synthesis of chromenes via metal-free domino reactions from ketones and phenols, ACS Comb. Sci. 14 (2012) 478-483; (b) S.I. Bhat, A.R. Choudhury, D.R. Trivedi, Condensation of malononitrile with salicylaldehydes and o-aminobenzaldehydes revisited: solvent and catalyst free synthesis of 4H-chromenes and quinolines, RSC Adv. 2 (2012) 10556-10563; (c) V.A. Osyanin, D.V. Osipov, Y.N. Klimochkin, Convenient one-step synthesis of 4-unsubstituted 2-amino-4H-chromene-2-carbonitriles and 5-unsubstituted 5Hchromeno[ 2,3-b]pyridine-3-carbonitriles from quaternary ammonium salts, Tetrahedron 68 (2012) 5612-5618; (d) Y. Gao, W. Yang, D.M. Du, Efficient organocatalytic asymmetric synthesis of 2-amino-4H-chromene-3-carbonitrile derivatives, Tetrahed. Asymm. 23 (2012) 339-344; (e) M.G. Dekamin, M. Eslami, A. Maleki, Potassium phthalimide-N-oxyl: a novel, efficient, and simple organocatalyst for the one-pot three-component synthesis of various 2-amino-4H-chromene derivatives in water, Tetrahedron 69 (2013) 1074-1085; (f) J.H. Park, Y.R. Lee, S.H. Kim, A novel synthesis of diverse 2-amino-5-hydroxy-4H-chromene derivatives with a spirooxindole nucleus by Ca(OH)2-mediated three-component reactions of substituted resorcinols with isatins and malononitrile, Tetrahedron 69 (2013) 9682-9689; (g) Y. Gao, D.M. Du, Facile synthesis of chiral 2-amino-4-(indol-3-yl)-4H-chromene derivatives using thiourea as the catalyst, Tetrahed. Asymm. 24 (2013) 1312-1317; (h) S.R. Kale, S.S. Kahandal, A.S. Burange, et al., A benign synthesis of 2-amino-4Hchromene in aqueous medium using hydrotalcite (HT) as a heterogeneous base catalyst, Catal. Sci. Technol. 3 (2013) 2050-2056; (i) G.D. Yin, H.Q. Shi, L.Y. Xu, X.H. Wei, Q. Tao, Selective synthesis of cyanofunctionalized 2-aryl-4H-chromenes and 2-amino-4H-chromene-3-carbonitriles by catalyst-tuned reactions of 2-hydroxychalcones with 2-substituted acetonitriles, Synthesis 45 (2013) 334-340; (j) R.L. Magar, P.B. Thorat, V.B. Jadhav, et al., Silica gel supported polyamine: a versatile catalyst for one pot synthesis of 2-amino-4H-chromene derivatives, J. Mol. Catal. A: Chem. 374-375 (2013) 118-124; (k) S.M. Baghbanian, N. Rezaei, H. Tashakkorian, Nanozeolite clinoptilolite as a highly efficient heterogeneous catalyst for the synthesis of various 2-amino-4H-chromene derivatives in aqueous media, Green Chem. 15 (2013) 3446-3458.

    12. [12]

      [12] A.G. Myers, A.T. Plowright, Synthesis and evaluation of bishydroquinone derivatives of (-)-saframycinA: identification of a versatile molecular template imparting potent antiproliferative activity, J. Am. Chem. Soc. 123 (2001) 5114-5115.

    13. [13]

      [13] T.F. Molinski, D.S. Dalisay, S.L. Lievens, J.P. Saludes, Drug development from marine natural products, Nat. Rev. Drug Discov. 8 (2009) 69-85.

    14. [14]

      [14] (a) Y.C. Wu, M. Liron, J.P. Zhu, Asymmetric total synthesis of (-)-quinocarcin, J. Am. Chem. Soc. 130 (2008) 7148-7152; (b) Y.C. Wu, G. Bernadat, G. Masson, et al., Synthetic studies on (-)-lemonomycin: an efficient asymmetric synthesis of lemonomycinone amide, J. Org. Chem. 74 (2009) 2046-2052; (c) Y.C. Wu, J.P. Zhu, Asymmetrie total syntheses of (-)-renieramycin M and G and (-)-jorumycin using aziridine as a lynchpin, Org. Lett. 11 (2009) 5558-5561.

    15. [15]

      [15] (a) Y.C. Wu, L. Liu, H.J. Li, et al., Skraup-doebner-von miller quinoline synthesis revisited: reversal of the regiochemistry for γ-aryl-β,γ-unsaturated α-ketoesters, J. Org. Chem. 71 (2006) 6592-6595; (b) Y.C. Wu, Y.J. Chen, H.J. Li, et al., Synthesis of trifluoromethyl-promoted functional pyrazolo[1,5-a]pyrimidine and pyrazolo[5,1-d][1,2,3,5]tetrazine-4(3H)-ones, J. Fluorine Chem. 127 (2006) 409-416; (c) Y.C. Wu, L. Liu, D. Wang, Y.J. Chen, Efficient synthesis of 3-arylaminopyrroline-2-ones by the tandem reaction of anilines and β,γ-unsaturated α-ketoesters, J. Heterocycl. Chem. 43 (2006) 949-955; (d) Y.C. Wu, H.J. Li, L. Liu, et al., Efficient construction of pyrazolo[1,5-a]pyrimidine scaffold and its exploration as a new heterocyclic fluorescent platform, J. Fluoresc. 18 (2008) 357-363; (e) Y.C. Wu, H.J. Li, H.Z. Yang, A sensitive and highly selective fluorescent sensor for In3+, Org. Biomol. Chem. 8 (2010) 3394-3397.

    16. [16]

      [16] (a) Y.C. Wu, H.J. Li, L. Liu, et al., Cascade reaction of β,γ-unsaturated α-ketoesters with phenols in trityl chloride/TFA system. highly selective synthesis of 4-aryl-2H-chromenes and their applications, Org. Biomol. Chem. 9 (2011) 2868-2877; (b) Y.C. Wu, L. Liu, Y.L. Liu, et al., TFA-mediated tandem Friedel-Crafts alkylation/ cyclization/hydrogen transfer process for the synthesis of flavylium compounds, J. Org. Chem. 72 (2007) 9383-9386; (c) Y.C. Wu, H.J. Li, L. Liu, et al., Facile synthesis of spiropyrans from chromene hemiacetal esters and bifunctional nucleophiles, Synlett (2011) 1573-1578; (d) Y.C. Wu, H.J. Li, L. Liu, et al., Hafnium triflate as an efficient catalyst for direct Friedel-Crafts reactions of chromene hemiacetals, Adv. Synth. Catal. 353 (2011) 907-912.

    17. [17]

      [17] (a) L. Chen, F. Zhou, T.D. Shi, J. Zhou, Metal-free tandem Friedel-Crafts/lactonization reaction to benzofuranones bearing a quaternary center at C3 position, J. Org. Chem. 77 (2012) 4354-4362; (b) L. Chen, J. Zhou, A highly efficient Friedel-Crafts reaction of tertiary ahydroxyesters or a-hydroxyketones to a-quaternary esters or ketones, Chem. Asian J. 7 (2012) 2510-2515.

    18. [18]

      [18] (a) Y.K. Liu, J.Q. Qian, S.J. Lou, et al., Gold(III)-catalyzed tandem reaction of ketones with phenols: efficient and highly selective synthesis of functionalized 4H-chromenes, J. Org. Chem. 75 (2010) 1309-1312; (b) H.J. Li, J.L. Wang, R. Wang, et al., Synthetic studies on potent marine drugs: synthesisandthecrystalstructureof6-tert-butyl-4-phenyl-4H-chromene-2-carboxylic acid, J. Chem. (2013), http://dx.doi.org/10.1155/2013/106908, Article ID 106908.

    19. [19]

      [19] (a) X.S. Wang, C.W. Zheng, S.L. Zhao, et al., Organocatalyzed Friedel-Crafts-type reaction of 2-naphthol with β,γ-unsaturated α-ketoesters to form novel optically active naphthopyran derivatives, Tetrahed. Asymm. 19 (2008) 2699-2704; (b) X. Jiang, L. Wu, Y. Xing, et al., Highly enantioselective Friedel-Crafts alkylation reaction catalyzed by rosin-derived tertiary amine-thiourea: synthesis of modified chromanes with anticancer potency, Chem. Commun. 48 (2012) 446-448.

    20. [20]

      [20] (a) H. Gaspard-Iloughmane, C.L. Roux, Bismuth(III) triflate in organic synthesis, Eur. J. Org. Chem. (2004) 2517-2532; (b) K. Komeyama, Y. Kouya, Y. Ohama, K. Takaki, Tandem ene-reaction/hydroamination of amino-olefin and-allene compounds catalyzed by Bi(OTf)3, Chem. Commun. 47 (2011) 5031-5033; (c) G. Lemiere, B. Cacciuttolo, E. Belhassen, E. Dunach, Bi(OTf)3-catalyzed cycloisomerization of aryl-allenes, Org. Lett. 14 (2012) 2750-2753; (d) B. Nammalwar, R.A. Bunce, Friedel-Crafts cyclization of tertiary alcohols using bismuth(III) triflate, Tetrahedron Lett. 54 (2013) 4330-4332; (e) F. Wu, V. Mandadapu, A.I. Day, Bi(OTf)3-a mild catalyst for the synthesis of difficultto obtainC-alkylsubstitutedglycolurils, Tetrahedron69(2013)9957-9965.

    21. [21]

      [21] Y.L. Liu, J. Zhou, Highly enantioselective organocatalytic asymmetric Mukaiyamaaldol reaction of difluoroenoxysilanes with β,γ-unsaturated α-ketoesters, Acta Chim. Sin. 70 (2012) 1451-1456.

  • 加载中
    1. [1]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    2. [2]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    3. [3]

      Xuan LiuQing Li . Tailoring interatomic active sites for highly selective electrocatalytic biomass conversion reaction. Chinese Chemical Letters, 2025, 36(4): 110670-. doi: 10.1016/j.cclet.2024.110670

    4. [4]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    5. [5]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    6. [6]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    7. [7]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    8. [8]

      Genxiang WangLinfeng FanPeng WangJunfeng WangFen QiaoZhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498

    9. [9]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    10. [10]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    11. [11]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    12. [12]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    13. [13]

      Xianchen HuJunli YangFang GaoZhiyong ZhaoSimin Liu . Highly selective [4+4] cross-photodimerization of (4a-azonia)anthracenes driven by confinement of D-A hetero-guest pair in cucurbit[10]uril host. Chinese Chemical Letters, 2025, 36(3): 109967-. doi: 10.1016/j.cclet.2024.109967

    14. [14]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    15. [15]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    16. [16]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    17. [17]

      Lu DaiYuxin RenShuang LiMeidi WangChentao HuYa-Pan WuGuangtong HaiDong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774

    18. [18]

      Jingping HuJing Xu . Total synthesis of a putative yuzurimine-type Daphniphyllum alkaloid C14epi-deoxycalyciphylline H. Chinese Chemical Letters, 2024, 35(4): 108733-. doi: 10.1016/j.cclet.2023.108733

    19. [19]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    20. [20]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

Metrics
  • PDF Downloads(0)
  • Abstract views(713)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return