Citation: Ning Cheng, Wen-Bin Yi, Qi-Qin Wang, Sheng-Ming Peng, Xiao-Qing Zou. Synthesis and α-glucosidase inhibitory activity of chrysin, diosmetin, apigenin, and luteolin derivatives[J]. Chinese Chemical Letters, ;2014, 25(7): 1094-1098. doi: 10.1016/j.cclet.2014.05.021 shu

Synthesis and α-glucosidase inhibitory activity of chrysin, diosmetin, apigenin, and luteolin derivatives

  • Corresponding author: Sheng-Ming Peng,  Xiao-Qing Zou, 
  • Received Date: 13 March 2014
    Available Online: 30 April 2014

    Fund Project: This work was financially supported by the Research Fund for the Doctoral Program of Higher Education of China (No. 20114301120004) (No. 20114301120004) Hunan Provincial Natural Science Foundation of China (No. 12JJ6081) (No. 12JJ6081) Dr.'s Start-up Foundation of Xiangtan University (No. 06KZjKZ08035) (No. 06KZjKZ08035)

  • Several derivatives have been synthesized from chrysin, diosmetin, apigenin, and luteolin, which were isolated from diverse natural plants. The a-glucosidase inhibitory activity of these compounds was evaluated. The glucosidase inhibitory activity of all derivatives (IC50 < 24.396 μmol/L) was higher compared with that of the reference drug, acarbose (IC50=563.601±40.492 mmol/L), and 1-deoxynojirimycin (IC50=226.912±12.573 μmol/L). O3',7-Hexyl diosmetin (IC50=2.406 0.101 mmol/L) was the most potent inhibitor identified. These compounds showed a higher inhibitory ability compared with their precursors except the luteolin derivatives. In general, the inhibitory activity of the synthetic derivatives was enhanced with long alkyl chains at positions 3', 4' and 7 of the flavonoid.
  • 加载中
    1. [1]

      [1] D.R. Whiting, L. Guariguata, C. Weil, J. Shaw, IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030, Diabetes Res. Clin. Pract. 94 (2011) 311-321.

    2. [2]

      [2] S.I. Taylor, D. Accili, Y. Imai, Insulin resistance or insulin deficiency: which is the primary cause of NIDDM? Diabetes 43 (1994) 735-740.

    3. [3]

      [3] D. Porte Jr., β-Cells in type II diabetes mellitus, Diabetes 40 (1991) 166-180.

    4. [4]

      [4] A.E. Butler, J. Janson, S. Bonner-Weir, et al., β-Cell deficit and increased β-cell apoptosis in humans with type 2 diabetes, Diabetes 52 (2003) 102-110.

    5. [5]

      [5] P.C. Tang, Z.G. Lin, Y. Wang, et al., Design and synthesis of DPP-4 inhibitor for the treatment of type 2 diabetes, Chin. Chem. Lett. 21 (2010) 253-256.

    6. [6]

      [6] Y.H. Wu, Synthesis of (S)-2-ethoxy-3-phenylpropanoic acid derivatives and their insulin-sensitizing activity, Chin. J. Chem. 25 (2007) 265-267.

    7. [7]

      [7] A.H. Samad, T.S.T. Willing, K.G.M. Alberti, R. Taylor, Effects of BAYm 1099, new aglucosidase inhibitor, on acute metabolic responses and metabolic control in NIDDM over 1 mo, Diabetes Care 11 (1988) 337-344.

    8. [8]

      [8] N. Asano, Glycosidase inhibitors: update and perspectives on practical use, Glycobiology 13 (2003) 93R-104R.

    9. [9]

      [9] K. O'Dea, J. Turton, Optimum effectiveness of intestinal alpha-glucosidase inhibitors: importance of uniform distribution through a meal, Am. J. Clin. Nutr. 41 (1985) 511-516.

    10. [10]

      [10] P. Lefebvre, A. Scheen, The use of acarbose in the prevention and treatment of hypoglycaemia, Eur. J. Clin. Invest. 24 (1994) 40-44.

    11. [11]

      [11] L.J. Scott, C.M. Spencer, Miglitol: a review of its therapeutic potential in type 2 diabetes mellitus, Drugs 59 (2000) 521-549.

    12. [12]

      [12] L.K. Campbell, D.E. Baker, R.K. Campbell, Miglitol: assessment of its role in the treatment of patients with diabetes mellitus, Ann. Pharmacother. 34 (2000) 1291-1301.

    13. [13]

      [13] A.J. Krentz, C.J. Bailey, Oral antidiabetic agents, Drugs 65 (2005) 385-411.

    14. [14]

      [14] D. Nathan, J. Buse, M. Davidson, et al., Management of hyperglycaemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy, Diabetologia 49 (2006) 1711-1721.

    15. [15]

      [15] S.H. Hsiao, L.H. Liao, P.N. Cheng, T.J. Wu, Hepatotoxicity associated with acarbose therapy, Ann. Pharmacother. 40 (2006) 151-154.

    16. [16]

      [16] Z.Y. Du, R.R. Liu, W.Y. Shao, et al., α-Glucosidase inhibition of natural curcuminoids and curcumin analogs, Eur. J. Med. Chem. 41 (2006) 213-218.

    17. [17]

      [17] E.B. de Melo, A. da Silveira Gomes, I. Carvalho, α-and β-glucosidase inhibitors: chemical structure and biological activity, Tetrahedron 62 (2006) 10277-10302.

    18. [18]

      [18] Y.I. Kwon, E. Apostolidis, K. Shetty, In vitro studies of eggplant (Solanum melongena) phenolics as inhibitors of key enzymes relevant for type 2 diabetes and hypertension, Bioresour. Technol. 99 (2008) 2981-2988.

    19. [19]

      [19] R. Tundis, M. Loizzo, F. Menichini, Natural products as-amylase and-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update, Mini-Rev. Med. Chem. 10 (2010) 315-331.

    20. [20]

      [20] L.G. Ranilla, Y.I. Kwon, E. Apostolidis, K. Shetty, Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America, Bioresour. Technol. 101 (2010) 4676-4689.

    21. [21]

      [21] M. Liu, W. Zhang, J. Wei, X. Lin, Synthesis and α-glucosidase inhibitory mechanisms of bis(2, 3-dibromo-4, 5-dihydroxybenzyl) ether, a potential marine bromophenol α-glucosidase inhibitor, Mar. Drugs 9 (2011) 1554-1565.

    22. [22]

      [22] R.R. Rao, A.K. Tiwari, P.P. Reddy, et al., Synthesis of antihyperglycemic, α-glucosidase inhibitory, and DPPH free radical scavenging furanochalcones, Med. Chem. Res. 21 (2012) 760-774.

    23. [23]

      [23] J.D. Xu, L.W. Zhang, Y.F. Liu, Synthesis and antioxidant activities of flavonoids derivatives, troxerutin and 3', 4', 7-triacetoxyethoxyquercetin, Chin. Chem. Lett. 24 (2013) 223-226.

    24. [24]

      [24] J.B. Zheng, H.F. Zhang, H. Gao, Investigation on electrochemical behavior and scavenging superoxide anion ability of chrysin at mercury electrode, Chin. J. Chem. 23 (2005) 1042-1046.

    25. [25]

      [25] H.D. Ly, S.G. Withers, Mutagenesis of glycosidases, Annu. Rev. Biochem. 68 (1999) 487-522.

    26. [26]

      [26] T. Schewe, Y. Steffen, H. Sies, How do dietary flavanols improve vascular function? A position paper, Arch. Biochem. Biophys. 476 (2008) 102-106.

    27. [27]

      [27] M.N. Clifford, Chlorogenic acids and other cinnamates -nature, occurrence and dietary burden, J. Sci. Food Agric. 79 (1999) 362-372.

    28. [28]

      [28] M. Richelle, I. Tavazzi, E. Offord, Comparison of the antioxidant activity of commonly consumed polyphenolic beverages (coffee, cocoa, and tea) prepared per cup serving, J. Agric. Food Chem. 49 (2001) 3438-3442.

    29. [29]

      [29] A. Crozier, I.B. Jaganath, M.N. Clifford, Dietary phenolics: chemistry, bioavailability and effects on health, Nat. Prod. Rep. 26 (2009) 1001-1043.

    30. [30]

      [30] Q.Q. Wang, N. Cheng, X.W. Zheng, S.M. Peng, X.Q. Zou, Synthesis of organic nitrates of luteolin as a novel class of potent aldose reductase inhibitors, Bioorg. Med. Chem. 21 (2013) 4301-4310.

    31. [31]

      [31] J.H. Cui, D. Hu, X. Zhang, Z. Jing, et al., Design and synthesis of new 7, 8-dimethoxya-naphthoflavones as CYP1A1 inhibitors, Chin. Chem. Lett. 24 (2013) 215-218.

    32. [32]

      [32] K. Hanhineva, R. Törrönen, I. Bondia-Pons, et al., Impact of dietary polyphenols on carbohydrate metabolism, Int. J. Mol. Sci. 11 (2010) 1365-1402.

    33. [33]

      [33] T. Nishioka, J. Kawabata, Y. Aoyama, Baicalein, an a-glucosidase inhibitor from Scutellaria baicalensis, J. Nat. Prod. 61 (1998) 1413-1415.

    34. [34]

      [34] H.W. Ryu, B.W. Lee, M.J. Curtis-Long, et al., Polyphenols from Broussonetia papyrifera displaying potent a-glucosidase inhibition, J. Agric. Food Chem. 58 (2009) 202-208.

    35. [35]

      [35] K. Tadera, Y. Minami, K. Takamatsu, T. Matsuoka, Inhibition of α-glucosidase and a-amylase by flavonoids, J. Nutr. Sci. Vitaminol. (Tokyo) 52 (2006) 149-153.

    36. [36]

      [36] W. Hakamata, I. Nakanishi, Y. Masuda, et al., Planar catechin analogues with alkyl side chains: a potent antioxidant and an α-glucosidase inhibitor, J. Am. Chem. Soc. 128 (2006) 6524-6525.

    37. [37]

      [37] J.S. Shin, K.S. Kim, M.B. Kim, J.H. Jeong, B.K. Kim, Synthesis and hypoglycemic effect of chrysin derivatives, Bioorg. Med. Chem. Lett. 9 (1999) 869-874.

    38. [38]

      [38] D.C. Wan, J.J. Yuan, Z.L. Yang, et al., Facile O-alkylation of highly hydrophilic hyperbranched polyglycerol, Chin. Chem. Lett. 18 (2007) 192-194.

    39. [39]

      [39] Y. Kashima, H. Yamaki, T. Suzuki, M. Miyazawa, Structure-activity relationships of bergenin derivatives effect on α-glucosidase inhibition, J. Enzyme Inhib. Med. Chem. 28 (2013) 1162-1170.

    40. [40]

      [40] Y.Q. Li, F.C. Zhou, F. Gao, J.S. Bian, F. Shan, Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of α-glucosidase, J. Agric. Food. Chem. 57 (2009) 11463-11468.

    41. [41]

      [41] W. Li, K. Wei, H. Fu, K. Koike, Structure and absolute configuration of clerodane diterpene glycosides and a rearranged cadinane sesquiterpene glycoside from the stems of Tinospora sinensis, J. Nat. Prod. 70 (2007) 1971-1976.

    42. [42]

      [42] S. Adisakwattana, P. Charoenlertkul, S. Yibchok-anun, α-Glucosidase inhibitory activity of cyanidin-3-galactoside and synergistic effect with acarbose, J. Enzyme Inhib. Med. Chem. 24 (2009) 65-69.

    43. [43]

      [43] C.M. Ma, M. Hattori, M. Daneshtalab, L. Wang, Chlorogenic acid derivatives with alkyl chains of different lengths and orientations: potent α-glucosidase inhibitors, J. Med. Chem. 51 (2008) 6188-6194.

    44. [44]

      [44] G.L. Li, J.Y. He, A. Zhang, et al., Toward potent α-glucosidase inhibitors based on xanthones: a closer look into the structure-activity correlations, Eur. J. Med. Chem. 46 (2011) 4050-4055.

    45. [45]

      [45] T.D. Heightman, A.T. Vasella, Recent insights into inhibition, structure, and mechanism of configuration-retaining glycosidases, Angew. Chem. Int. Ed. 38 (1999) 750-770.

    46. [46]

      [46] A. Vasella, G.J. Davies, M. Böhm, Glycosidase mechanisms, Curr. Opin. Chem. Biol. 6 (2002) 619-629.

    47. [47]

      [47] D.L. Zechel, S.G. Withers, Glycosidase mechanisms: anatomy of a finely tuned catalyst, Acc. Chem. Res. 33 (2000) 11-18.

    48. [48]

      [48] H. Gao, T. Nishioka, J. Kawabata, T. Kasai, Structure-activity relationships for aglucosidase inhibition of baicalein, 5, 6, 7-trihydroxyflavone: the effect of A-ring substitution, Biosci. Biotechnol. Biochem. 68 (2004) 369-375.

    49. [49]

      [49] V. Kumar, S. Kumar, P. Rani, Pharmacophore modeling and 3D-QSAR studies on flavonoids as a-glucosidase inhibitors, Der Pharma Chemica 2 (2010) 324-335.

  • 加载中
    1. [1]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    2. [2]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    3. [3]

      Fangwen Peng Zhen Luo Yingjin Ma Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273

    4. [4]

      Chenlu HuangXinyu YangQingyu YuLinhua ZhangDunwan Zhu . Gas-generating polymersomes-based amplified photoimmunotherapy for abscopal effect and tumor metastasis inhibition. Chinese Chemical Letters, 2024, 35(6): 109680-. doi: 10.1016/j.cclet.2024.109680

    5. [5]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    6. [6]

      Yuanzheng WangChen ZhangShuyan HanXiaoli KongChangyun QuanJun WuWei Zhang . Cancer cell membrane camouflaged biomimetic gelatin-based nanogel for tumor inhibition. Chinese Chemical Letters, 2024, 35(11): 109578-. doi: 10.1016/j.cclet.2024.109578

    7. [7]

      Yanfei LiuYaqin HuYifu TanQiwen ChenZhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289

    8. [8]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    9. [9]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

    10. [10]

      Zhuwen WeiJiayan ChenCongzhen XieYang ChenShifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677

    11. [11]

      Fei-Yan GaoYan WuLing YangZhong-Yi MaYi ChenXiao-Man MaoXu-Fei BianPei TangChong Li . Orally delivered berberine derivatives for dual therapy in diabetic complications with MRSA infections. Chinese Chemical Letters, 2025, 36(4): 109917-. doi: 10.1016/j.cclet.2024.109917

    12. [12]

      Yi CaoXiaojiao GeYuanyuan WeiLulu HeAiguo WuJuan Li . Tumor microenvironment-activatable neuropeptide-drug conjugates enhanced tumor penetration and inhibition via multiple delivery pathways and calcium deposition. Chinese Chemical Letters, 2024, 35(4): 108672-. doi: 10.1016/j.cclet.2023.108672

    13. [13]

      Shuying LiWeiwei ZhuGeXuan SunChongzhen SunZhaojun LiuChenghe XiongMin XiaoGuofeng Gu . Convergent synthesis and immunological study of oligosaccharide derivatives related to galactomannan from Antrodia cinnamomea. Chinese Chemical Letters, 2024, 35(5): 109089-. doi: 10.1016/j.cclet.2023.109089

    14. [14]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    15. [15]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    16. [16]

      Jun-Ming CaoKai-Yang ZhangJia-Lin YangZhen-Yi GuXing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304

    17. [17]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    18. [18]

      Liping ZhaoXixi GuoZhimeng ZhangXi LuQingxuan ZengTianyun FanXintong ZhangFenbei ChenMengyi XuMin YuanZhenjun LiJiandong JiangJing PangXuefu YouYanxiang WangDanqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506

    19. [19]

      Yu HongYuqian JiangChenhuan YuanDecai WangYimeng SunJian Jiang . Unraveling temperature-dependent supramolecular polymorphism of naphthalimide-substituted benzene-1,3,5-tricarboxamide derivatives. Chinese Chemical Letters, 2024, 35(12): 109909-. doi: 10.1016/j.cclet.2024.109909

    20. [20]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

Metrics
  • PDF Downloads(0)
  • Abstract views(602)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return