Citation: Jin-Wu Zhao, Jing-Xiu Xu, Xiu-Zhen Guo. Green synthesis of 1,2,4-thiadizoles from thioamides in water using molecular oxygen as an oxidant[J]. Chinese Chemical Letters, ;2014, 25(11): 1499-1502. doi: 10.1016/j.cclet.2014.05.019 shu

Green synthesis of 1,2,4-thiadizoles from thioamides in water using molecular oxygen as an oxidant

  • Corresponding author: Jin-Wu Zhao, 
  • Received Date: 13 March 2014
    Available Online: 5 May 2014

    Fund Project: We thank Guangdong Medical College (No. XK1110) for financial support. (No. XK1110)

  • We present here an efficient green process for the synthesis of 1,2,4-thiadiazoles via iodine-catalyzed, oxidative dimerization of thioamides in water using molecular oxygen as a terminal oxidant. Under the optimized reaction conditions, aryl thioamides produced 3,5-diaryl-1,2,4-thiadiazoles in good to excellent yields. Alkyl thioamides and substituted thioureas could also provide corresponding 1,2,4- thiadiazole products.
  • 加载中
    1. [1]

      [1] (a) W.J.W. Watson, How do the fine chemical, pharmaceutical, and related industries approach green chemistry and sustainability? Green Chem. 14 (2012) 251-259; (b) P.J. Dunn, The importance of green chemistry in process research and development, Chem. Soc. Rev. 41 (2012) 1452-1461; (c) P.J. Dunn, Pharmaceutical green chemistry process changes - how long does it take to obtain regulatory approval? Green Chem. 15 (2013) 3099-3104.

    2. [2]

      [2] (a) M.O. Simona, C.J. Li, Green chemistry oriented organic synthesis in water, Chem. Soc. Rev. 41 (2012) 1415-1427; (b) R.N. Butler, A.G. Coyne, Water: nature's reaction enforcer-comparative effects for organic synthesis "in-water" and "on-water", Chem. Rev. 110 (2010) 6302- 6337; (c) T. Chang, L.Q. He, L. Bian, et al., Brønsted acid-surfactant-combined catalyst for the Mannich reaction in water, RSC Adv. 4 (2014) 727-731.

    3. [3]

      [3] (a) W.Q. Wu, H.F. Jiang, Palladium-catalyzed oxidation of unsaturated hydrocarbons using molecular oxygen, Acc. Chem. Res. 45 (2012) 1736-1748; (b) Z.Z. Shi, C. Zhang, C.H. Tang, N. Jiao, Recent advances in transition-metal catalyzed reactions using molecular oxygen as the oxidant, Chem. Soc. Rev. 41 (2012) 3381-3430; (c) G.Y. Liu, R.R. Tang, Z.Wang, Metal-free allylic oxidation with molecular oxygen catalyzed by g-C3N4 and N-hydroxyphthalimide, Catal. Lett. 144 (2014) 717-722.

    4. [4]

      [4] A. Castro, T. Castañ o, A. Encinas, W. Porcal, C. Gil, Advances in the synthesis and recent therapeutic applications of 1,2,4-thiadiazole heterocycles, Bioorg. Med. Chem. 14 (2006) 1644-1652.

    5. [5]

      [5] A.S. Mayhoub, L. Marler, T.P. Kondratyuk, R. Gupta, K. Shah, Optimizing thiadiazole analogues of resveratrol versus three chemopreventive targets, Bioorg. Med. Chem. 20 (2012) 510-520.

    6. [6]

      [6] D. Kumar, N.M. Kumar, K.H. Chang, et al., Synthesis and in-vitro anticancer activity of 3,5-bis(indolyl)-1,2,4-thiadiazoles, Bioorg. Med. Chem. Lett. 21 (2011) 5897-5900.

    7. [7]

      [7] F. Ren, G.H. Deng, H.L. Wang, et al., Discovery of novel 1,2,4-thiadiazole derivatives as potent, orally active agonists of sphingosine 1-phosphate receptor subtype 1 (S1P1), J. Med. Chem. 55 (2012) 4286-4296.

    8. [8]

      [8] (a) E.A.F. Fordyce, A.J. Morrison, R.D. Sharp, et al., Microwave-induced generation and reactions of nitrile sulfides: an improved method for the synthesis of isothiazoles and 1,2,4-thiadiazoles, Tetrahedron 66 (2010) 7192-7200; (b) H.A. Beeley, S. Degorce, C.S. Harris, et al., One-pot synthesis of bis(amino)- 1,2,4-thiadiazoles via direct SNAr, Tetrahedron Lett. 54 (2013) 788-791; (c) J. Noei, A.R. Khosropour, A novel process for the synthesis of 3,5-diaryl-1,2,4- thiadiazoles from aryl nitriles, Tetrahedron Lett. 54 (2013) 9-11; (d) Y.L. Xu, J.X. Chen, W.X. Gao, et al., Solvent-free synthesis of 3,5-di(hetero)aryl- 1,2,4-thiadiazoles by grinding of thioamides under oxidative conditions, J. Chem. Res. 34 (2010) 151-153.

    9. [9]

      [9] (a) A.A. Shah, Z.A. Khan, N. Choudhary, et al., Iodoxolone-based hypervalent iodine reagents, Org. Lett. 11 (2009) 3578-3581; (b) P.C. Patil, D.S. Bhalerao, P.S. Dangate, et al., IBX/TEAB-mediated oxidative dimerization of thioamides: synthesis of 3,5-disubstituted 1,2,4-thiadiazoles, Tetrahedron Lett. 50 (2009) 5820-5822.

    10. [10]

      [10] (a) A.S. Mayhoub, E. Kiselev, M. Cushman, An unexpected synthesis of 3,5-diaryl- 1,2,4-thiadiazoles from thiobenzamides and methyl bromocyanoacetate, Tetrahedron Lett. 52 (2011) 4941-4943; (b) H.Z. Boeini, M. Mobin, An unexpected result of the reaction of benzothioamide derivatives with 2-aryl-2-bromoacetonitriles, Helv. Chim. Acta 94 (2011) 2039-2044.

    11. [11]

      [11] (a) A.R. Khosropour, J. Noei, TCT-DMSO/[bmim]BF4: a novel promoter system for the synthesis of 3,5-diaryl-1,2,4-thiadiazoles at ambient temperature, J. Heterocycl. Chem. 48 (2010) 226-229; (b) Y. Takikawa, K. Shimada, K. Sato, et al., Convenient preparations of 3,5- disubstituted 1,2,4-thiadiazoles by oxidative dimerization of thioamides, Bull. Chem. Soc. Jpn. 58 (1985) 995-999.

    12. [12]

      [12] (a) T. Fukumoto, T. Matsuki, N.X. Hu, Benzenetellurinic mixed anhydrides as mild oxidizing agents, Chem. Lett. 19 (1990) 2269-2272; (b) M.T.M. El-Wassimy, K.A. Jorgensen, S.O. Lawesson, The reaction of t-butyl hypochlorite with thiocarbonyl compound - a convenient method for the transformation, Tetrahedron 39 (1983) 1729-1734.

  • 加载中
    1. [1]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    2. [2]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    5. [5]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    6. [6]

      Junan PanXinyi LiuHuachao JiYanwei ZhuYanling ZhuangKang ChenNing SunYongqi LiuYunchao LeiKun WangBao ZangLonglu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515

    7. [7]

      Chenhao ZhangQian ZhangYezhou HuHanyu HuJunhao YangChang YangYe ZhuZhengkai TuDeli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429

    8. [8]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    9. [9]

      Yan ZhuJia LiuMeiheng LvTingting WangDongxiang ZhangRong ShangXin-Dong JiangJianjun DuGuiling Wang . Heavy-atom-free orthogonal configurative dye 1,7-di-anthra-aza-BODIPY for singlet oxygen generation. Chinese Chemical Letters, 2024, 35(10): 109446-. doi: 10.1016/j.cclet.2023.109446

    10. [10]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    11. [11]

      Qing LiYumei FengYingjie YuYazhou ChenYuhua XieFang LuoZehui Yang . Engineering eg filling of RuO2 enables a robust and stable acidic water oxidation. Chinese Chemical Letters, 2025, 36(3): 110612-. doi: 10.1016/j.cclet.2024.110612

    12. [12]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    13. [13]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    14. [14]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    15. [15]

      Shuai Liu Wen Wu Peili Zhang Yunxuan Ding Chang Liu Yu Shan Ke Fan Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535

    16. [16]

      Lu DaiYuxin RenShuang LiMeidi WangChentao HuYa-Pan WuGuangtong HaiDong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774

    17. [17]

      Ruonan YangJiajia LiDongmei ZhangXiuqi ZhangXia LiHan YuZhanhu GuoChuanxin HouGang LianFeng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595

    18. [18]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    19. [19]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    20. [20]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

Metrics
  • PDF Downloads(0)
  • Abstract views(737)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return