Citation:
Jin-Wu Zhao, Jing-Xiu Xu, Xiu-Zhen Guo. Green synthesis of 1,2,4-thiadizoles from thioamides in water using molecular oxygen as an oxidant[J]. Chinese Chemical Letters,
;2014, 25(11): 1499-1502.
doi:
10.1016/j.cclet.2014.05.019
-
We present here an efficient green process for the synthesis of 1,2,4-thiadiazoles via iodine-catalyzed, oxidative dimerization of thioamides in water using molecular oxygen as a terminal oxidant. Under the optimized reaction conditions, aryl thioamides produced 3,5-diaryl-1,2,4-thiadiazoles in good to excellent yields. Alkyl thioamides and substituted thioureas could also provide corresponding 1,2,4- thiadiazole products.
-
Keywords:
- 1,2,4-Thiadizole,
- Thioamide,
- Water,
- Oxygen
-
-
-
[1]
[1] (a) W.J.W. Watson, How do the fine chemical, pharmaceutical, and related industries approach green chemistry and sustainability? Green Chem. 14 (2012) 251-259; (b) P.J. Dunn, The importance of green chemistry in process research and development, Chem. Soc. Rev. 41 (2012) 1452-1461; (c) P.J. Dunn, Pharmaceutical green chemistry process changes - how long does it take to obtain regulatory approval? Green Chem. 15 (2013) 3099-3104.
-
[2]
[2] (a) M.O. Simona, C.J. Li, Green chemistry oriented organic synthesis in water, Chem. Soc. Rev. 41 (2012) 1415-1427; (b) R.N. Butler, A.G. Coyne, Water: nature's reaction enforcer-comparative effects for organic synthesis "in-water" and "on-water", Chem. Rev. 110 (2010) 6302- 6337; (c) T. Chang, L.Q. He, L. Bian, et al., Brønsted acid-surfactant-combined catalyst for the Mannich reaction in water, RSC Adv. 4 (2014) 727-731.
-
[3]
[3] (a) W.Q. Wu, H.F. Jiang, Palladium-catalyzed oxidation of unsaturated hydrocarbons using molecular oxygen, Acc. Chem. Res. 45 (2012) 1736-1748; (b) Z.Z. Shi, C. Zhang, C.H. Tang, N. Jiao, Recent advances in transition-metal catalyzed reactions using molecular oxygen as the oxidant, Chem. Soc. Rev. 41 (2012) 3381-3430; (c) G.Y. Liu, R.R. Tang, Z.Wang, Metal-free allylic oxidation with molecular oxygen catalyzed by g-C3N4 and N-hydroxyphthalimide, Catal. Lett. 144 (2014) 717-722.
-
[4]
[4] A. Castro, T. Castañ o, A. Encinas, W. Porcal, C. Gil, Advances in the synthesis and recent therapeutic applications of 1,2,4-thiadiazole heterocycles, Bioorg. Med. Chem. 14 (2006) 1644-1652.
-
[5]
[5] A.S. Mayhoub, L. Marler, T.P. Kondratyuk, R. Gupta, K. Shah, Optimizing thiadiazole analogues of resveratrol versus three chemopreventive targets, Bioorg. Med. Chem. 20 (2012) 510-520.
-
[6]
[6] D. Kumar, N.M. Kumar, K.H. Chang, et al., Synthesis and in-vitro anticancer activity of 3,5-bis(indolyl)-1,2,4-thiadiazoles, Bioorg. Med. Chem. Lett. 21 (2011) 5897-5900.
-
[7]
[7] F. Ren, G.H. Deng, H.L. Wang, et al., Discovery of novel 1,2,4-thiadiazole derivatives as potent, orally active agonists of sphingosine 1-phosphate receptor subtype 1 (S1P1), J. Med. Chem. 55 (2012) 4286-4296.
-
[8]
[8] (a) E.A.F. Fordyce, A.J. Morrison, R.D. Sharp, et al., Microwave-induced generation and reactions of nitrile sulfides: an improved method for the synthesis of isothiazoles and 1,2,4-thiadiazoles, Tetrahedron 66 (2010) 7192-7200; (b) H.A. Beeley, S. Degorce, C.S. Harris, et al., One-pot synthesis of bis(amino)- 1,2,4-thiadiazoles via direct SNAr, Tetrahedron Lett. 54 (2013) 788-791; (c) J. Noei, A.R. Khosropour, A novel process for the synthesis of 3,5-diaryl-1,2,4- thiadiazoles from aryl nitriles, Tetrahedron Lett. 54 (2013) 9-11; (d) Y.L. Xu, J.X. Chen, W.X. Gao, et al., Solvent-free synthesis of 3,5-di(hetero)aryl- 1,2,4-thiadiazoles by grinding of thioamides under oxidative conditions, J. Chem. Res. 34 (2010) 151-153.
-
[9]
[9] (a) A.A. Shah, Z.A. Khan, N. Choudhary, et al., Iodoxolone-based hypervalent iodine reagents, Org. Lett. 11 (2009) 3578-3581; (b) P.C. Patil, D.S. Bhalerao, P.S. Dangate, et al., IBX/TEAB-mediated oxidative dimerization of thioamides: synthesis of 3,5-disubstituted 1,2,4-thiadiazoles, Tetrahedron Lett. 50 (2009) 5820-5822.
-
[10]
[10] (a) A.S. Mayhoub, E. Kiselev, M. Cushman, An unexpected synthesis of 3,5-diaryl- 1,2,4-thiadiazoles from thiobenzamides and methyl bromocyanoacetate, Tetrahedron Lett. 52 (2011) 4941-4943; (b) H.Z. Boeini, M. Mobin, An unexpected result of the reaction of benzothioamide derivatives with 2-aryl-2-bromoacetonitriles, Helv. Chim. Acta 94 (2011) 2039-2044.
-
[11]
[11] (a) A.R. Khosropour, J. Noei, TCT-DMSO/[bmim]BF4: a novel promoter system for the synthesis of 3,5-diaryl-1,2,4-thiadiazoles at ambient temperature, J. Heterocycl. Chem. 48 (2010) 226-229; (b) Y. Takikawa, K. Shimada, K. Sato, et al., Convenient preparations of 3,5- disubstituted 1,2,4-thiadiazoles by oxidative dimerization of thioamides, Bull. Chem. Soc. Jpn. 58 (1985) 995-999.
-
[12]
[12] (a) T. Fukumoto, T. Matsuki, N.X. Hu, Benzenetellurinic mixed anhydrides as mild oxidizing agents, Chem. Lett. 19 (1990) 2269-2272; (b) M.T.M. El-Wassimy, K.A. Jorgensen, S.O. Lawesson, The reaction of t-butyl hypochlorite with thiocarbonyl compound - a convenient method for the transformation, Tetrahedron 39 (1983) 1729-1734.
-
[1]
-
-
-
[1]
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
-
[2]
Chunhua Ma , Mengjiao Liu , Siyu Ouyang , Zhenwei Cui , Jingjing Bi , Yuqin Jiang , Zhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755
-
[3]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[4]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[5]
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
-
[6]
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
-
[7]
Chenhao Zhang , Qian Zhang , Yezhou Hu , Hanyu Hu , Junhao Yang , Chang Yang , Ye Zhu , Zhengkai Tu , Deli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429
-
[8]
Shiqi Xu , Zi Ye , Shuang Shang , Fengge Wang , Huan Zhang , Lianguo Chen , Hao Lin , Chen Chen , Fang Hua , Chong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034
-
[9]
Yan Zhu , Jia Liu , Meiheng Lv , Tingting Wang , Dongxiang Zhang , Rong Shang , Xin-Dong Jiang , Jianjun Du , Guiling Wang . Heavy-atom-free orthogonal configurative dye 1,7-di-anthra-aza-BODIPY for singlet oxygen generation. Chinese Chemical Letters, 2024, 35(10): 109446-. doi: 10.1016/j.cclet.2023.109446
-
[10]
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
-
[11]
Qing Li , Yumei Feng , Yingjie Yu , Yazhou Chen , Yuhua Xie , Fang Luo , Zehui Yang . Engineering eg filling of RuO2 enables a robust and stable acidic water oxidation. Chinese Chemical Letters, 2025, 36(3): 110612-. doi: 10.1016/j.cclet.2024.110612
-
[12]
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
-
[13]
Fang-Yuan Chen , Wen-Chao Geng , Kang Cai , Dong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161
-
[14]
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
-
[15]
Shuai Liu , Wen Wu , Peili Zhang , Yunxuan Ding , Chang Liu , Yu Shan , Ke Fan , Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535
-
[16]
Lu Dai , Yuxin Ren , Shuang Li , Meidi Wang , Chentao Hu , Ya-Pan Wu , Guangtong Hai , Dong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774
-
[17]
Ruonan Yang , Jiajia Li , Dongmei Zhang , Xiuqi Zhang , Xia Li , Han Yu , Zhanhu Guo , Chuanxin Hou , Gang Lian , Feng Dang . Grain-refining Co0.85Se@CNT cathode catalyst with promoted Li2O2 growth kinetics for lithium-oxygen batteries. Chinese Chemical Letters, 2024, 35(12): 109595-. doi: 10.1016/j.cclet.2024.109595
-
[18]
Mengxiang Zhu , Tao Ding , Yunzhang Li , Yuanjie Peng , Ruiping Liu , Quan Zou , Leilei Yang , Shenglei Sun , Pin Zhou , Guosheng Shi , Dongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833
-
[19]
Kun Tang , Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376
-
[20]
Ling Tang , Yan Wan , Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(739)
- HTML views(8)