Citation:
Yue Cong, Jing-Gong Guo, Zhi Tang, Qing-Chun Zhang, Zong-Wei Cai. Identification of in vitro and in vivo metabolites of 12β-hydroxylveratroylzygadenine associated with neurotoxicity by using HPLC-MS/MS[J]. Chinese Chemical Letters,
;2014, 25(8): 1107-1111.
doi:
10.1016/j.cclet.2014.05.016
-
Metabolism study was carried out on 12β-hydroxylveratroylzygadenine (VOG) that is a cevine-type alkaloid existing in Veratrum nigrum L. and a neurotoxic component. In order to better understand the potential mechanism of neurotoxicity of VOG, this study measured VOG-induced DNA damage in the cerebellum and cerebral cortex of mice after 7 days repetitive oral dose by using single-cell gel electrophoresis (Comet assay). High performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed and applied to separate and identify in vitro and in vivo metabolites of VOG for investing the possible relationship of metabolism and neurotoxicity. In vitro experiment was carried out using rat liver microsomes, while the in vivo study was conducted on rats. The obtained results indicated that VOG might cause DNA damage in cerebellum and cerebral cortex of mice in a dosedependent manner. Hydrolysis of ester bond and O-demethylation were proposed to be themain in vivo metabolic pathways of VOG, while the major in vitro metabolic pathways were proposed as methyl oxidation to aldehyde, dehydrogenation, hydrolysis of ester bond, hydrolysis of ester bond together with acetylation, and methoxylation. O-Demethylation reaction was likely to be associated with reactive oxygen species production, leading to the DNA damage.
-
Keywords:
- 12β-Hydroxylveratroylzygadenine,
- Metabolites,
- O-Demethylation,
- LC-MS
-
-
-
[1]
[1] J. Tang, H.L. Li, H.Q. Huang, W.D. Zhang, Progress in the research on chemical constituents of Veratrum plants, Prog. Pharm. Sci. 30 (2006) 206-212.
-
[2]
[2] B. Furbee, Neurotoxic plants, in: M.R. Dobbs (Ed.), Clinical Neurotoxicology, EPublishing Inc., New York, 2009, pp. 523-542.
-
[3]
[3] Y. Cong, Y.H. Zhang, L. Guo, J.H. Wang, Veratrum japonicum with genotoxicity on brain cells DNA of cerebellum and cerebral cortex in mice, Chin. Trad. Pat. Med. 33 (2011) 1234-1236.
-
[4]
[4] E.M.S. Freitasa, M.M. Fagianb, M.A.D.C. Höflinga, Effects of veratrine and veratridine on oxygen consumption and electrical membrane potential of isolated rat skeletal muscle and liver mitochondria, Toxicon 47 (2006) 780-787.
-
[5]
[5] M.L. Omnell, F.R. Sim, R.F. Keeler, et al., Expression of Veratrum alkaloid teratogenicity in the mouse, Teratology 42 (1990) 105-119.
-
[6]
[6] Atta-ur-Rahman, R.A. Ali, A. Gilani, et al., Isolation of antihypertensive alkaloids from the rhizomes of Veratrum album, Planta Med. 59 (1993) 569-571.
-
[7]
[7] D.Y. Lian, M.Z. Chen, H.S. Lin, S.Q. Wu, Veratrum nigrum L. in the treatment of 77 patients with vesania and schizophrenia, New Chin. Med. 17 (1986) 295.
-
[8]
[8] G. Quatrehomme, F. Bertrand, C. Chauvet, A. Ollier, Intoxication from Veratrum album, Hum. Exp. Toxicol. 12 (1993) 111-115.
-
[9]
[9] A. Fogh, P. Kulling, E. Wickstrom, Veratrum alkaloids in sneezing-powder a potential danger, J. Toxicol. Clin. Toxicol. 20 (1983) 175-179.
-
[10]
[10] T. Grobosch, T. Binscheck, F. Martens, D. Lampe, Accidental intoxication with Veratrum album, J. Anal. Toxicol. 32 (2008) 768-773.
-
[11]
[11] Y. Zhao, G.C. Lu, W.D. Zhang, et al., Progress in the research on pharmacology and toxicology of Veratrum alkaloids, Trad. Chin. Drug Res. Clin. Pharm. 19 (2008) 240-242.
-
[12]
[12] Y. Cong, L. Guo, J.Y. Yang, et al., Steroidal alkaloids from Veratrum japonicum with genotoxicity on brain cells DNA of cerebellum and cerebral cortex in mice, Planta Med. 73 (2007) 1588-1591.
-
[13]
[13] Y. Cong, Y.B. Zhou, J. Chen, et al., Alkaloid profiling of crude and processed Veratrum nigrum L. through simultaneous determination of ten steroidal alkaloids by HPLC-ELSD, J. Pharm. Biomed. Anal. 48 (2008) 573-578.
-
[14]
[14] G.Y. Liang, Progress in the research on Veratrum alkaloids, Acta Pharmaceut. Sin. 19 (1984) 309-320.
-
[15]
[15] Y. Cong, J.H. Wang, R. Wang, et al., A study on the chemical constituents of Veratrum nigrum L. processed by rice vinegar, J. Asian Nat. Prod. Res. 10 (2008) 619-624.
-
[16]
[16] A. Niitsu, M. Harada, T. Yamagaki, K. Tachibana, Conformations of 3-carboxylic esters essential for neurotoxicityin veratrum alkaloids are loosely restricted and fluctuate, Bioorg. Med. Chem. 16 (2008) 3025-3031.
-
[17]
[17] N. Rajapakse, M. Butterworth, A. Kortenkamp, Detection of DNA strand breaks and oxidized DNA bases at the single-cell level resulting from exposure to estradiol and hydroxylated metabolites, Environ. Mol. Mutagen. 45 (2005) 397-404.
-
[18]
[18] V. Sipinen, J. Laubenthal, A. Baumgartner, et al., In vitro evaluation of baseline and induced DNA damage in human sperm exposed to benzo[a]pyrene or its metabolite benzo[a]pyrene-7,8-diol-9,10-epoxide, using the comet assay, Mutagenesis 25 (2010) 417-425.
-
[19]
[19] Y.Q. Lai, M.H. Lu, X. Gao, et al., New evidence for toxicity of polybrominated diphenyl ethers: DNA adduct formation from quinone metabolites, Environ. Sci. Technol. 45 (2011) 10720-10727.
-
[20]
[20] X. Ye, Y.G. Wang, M.H. Yang, et al., Investigating the in vitro metabolism of veratridine: characterization of metabolites and involved cytochrome P450 isoforms, J. Chromatogr. B 877 (2009) 141-148.
-
[21]
[21] L. Guo, L.H. Wang, B.S. Sun, et al., Direct in vivo evidence of protective effects of grape seed procyanidin fractions and other antioxidants against ethanol-induced oxidative DNA damage in mouse brain cells, J. Agric. Food Chem. 55 (2007) 5881-5891.
-
[22]
[22] Y.Q. Lai, Z.W. Cai, In vitro metabolism of hydroxylated polybrominated diphenyl ethers and their inhibitory effects on 17β-estradiol metabolism in rat liver microsomes, Environ. Sci. Pollut. Res. 19 (2012) 3219-3227.
-
[23]
[23] T. Omura, R. Sato, The carbon monoxide-binding pigment of liver microsomes I. Evidence for its hemoprotein nature, J. Biol. Chem. 239 (1964) 2370-2378.
-
[24]
[24] M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72 (1976) 248-254.
-
[25]
[25] X.G. Chen, Y.Q. Lai, Z.W. Cai, Simultaneous analysis of aconitine and its metabolites by liquid chromatography-electrospray ion trap mass spectrometry, J. Chin. Mass Spectrom. Soc. 33 (2012) 65-73.
-
[26]
[26] H.L. Li, J. Tang, R.H. Liu, et al., Characterization and identification of steroidal alkaloids in the Chinese herb Veratrum nigrum L. by high-performance liquid chromatography/electrospray ionization with multi-stage mass spectrometry, Rapid Commun. Mass Spectrom. 21 (2007) 869-879.
-
[27]
[27] M. Holcapek, L. Kolárová, M. Nobilis, High-performance liquid chromatography-tandem mass spectrometry in the identification and determination of phase I and phase II drug metabolites, Anal. Bioanal. Chem. 391 (2008) 59-78.
-
[28]
[28] C.J. Deglmann, T. Ebner, E. Ludwig, et al., Protein binding capacity in vitro changes metabolism of substrates and influences the predictability of metabolic pathways in vivo, Toxicol. In Vitro 18 (2004) 835-840.
-
[29]
[29] I.M.C.M. Rietjens, H.M. Awad, M.G. Boersma, et al., Structure activity relationships for the chemical behaviour and toxicity of electrophilic quinones/quinone methides, Adv. Exp. Med. Biol. 500 (2001) 11-21.
-
[30]
[30] I. Miyazaki, M. Asanuma, Approaches to prevent dopamine quinone-induced neurotoxicity, Neurochem. Res. 34 (2009) 698-706.
-
[31]
[31] H.G. Baumgarten, L. Lachenmayer, Serotonin neurotoxins-past and present, Neurotox. Res. 6 (2004) 589-614.
-
[32]
[32] J.L. Bolton, M.A. Trush, T.M. Penning, et al., Role of quinones in toxicology, Chem. Res. Toxicol. 13 (2000) 135-160.
-
[1]
-
-
-
[1]
Aolei Tan , Xiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276
-
[2]
Ran Wu , Dongxu Jiang , Hao Hu , Chenyu Yang , Liang Qin , Lulu Chen , Zehui Hu , Hualei Xu , Jinrong Li , Haiqiang Liu , Hua Guo , Jinxiang Fu , Qichen Hao , Yijun Zhou , Jinchao Feng , Qiang Wang , Xiaodong Wang . 4-Aminoazobenzene: A novel negative ion matrix for enhanced MALDI tissue imaging of metabolites. Chinese Chemical Letters, 2024, 35(11): 109624-. doi: 10.1016/j.cclet.2024.109624
-
[3]
Guo-Ping Yin , Ya-Juan Li , Li Zhang , Ling-Gao Zeng , Xue-Mei Liu , Chang-Hua Hu . Citrinsorbicillin A, a novel homotrimeric sorbicillinoid isolated by LC-MS-guided with cytotoxic activity from the fungus Trichoderma citrinoviride HT-9. Chinese Chemical Letters, 2024, 35(8): 109035-. doi: 10.1016/j.cclet.2023.109035
-
[4]
Jun-Jie Fang , Zheng Liu , Yun-Peng Xie , Xing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345
-
[5]
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032
-
[6]
Jianjun Fang , Kunchen Xie , Yongli Song , Kangyi Zhang , Fei Xu , Xiaoze Shi , Ming Ren , Minzhi Zhan , Hai Lin , Luyi Yang , Shunning Li , Feng Pan . Break the capacity limit of Li4Ti5O12 anodes through oxygen vacancy engineering. Chinese Journal of Structural Chemistry, 2025, 44(2): 100504-100504. doi: 10.1016/j.cjsc.2024.100504
-
[7]
Yan ZHAO , Jiaxu WANG , Zhonghu LI , Changli LIU , Xingsheng ZHAO , Hengwei ZHOU , Xiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316
-
[8]
Zhiyuan TONG , Ziyuan LI , Ke ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238
-
[9]
. Cover and Table of Contents for Vol.40 No. 12. Acta Physico-Chimica Sinica, 2024, 40(12): -.
-
[10]
Zizhuo Liang , Fuming Du , Ning Zhao , Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108
-
[11]
Ruizhi Yang , Xia Li , Weiping Guo , Zixuan Chen , Hongwei Ming , Zhong-Zhen Luo , Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268
-
[12]
Ya-Nan Yang , Zi-Sheng Li , Sourav Mondal , Lei Qiao , Cui-Cui Wang , Wen-Juan Tian , Zhong-Ming Sun , John E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048
-
[13]
Lingbang Qiu , Jiangmin Jiang , Libo Wang , Lang Bai , Fei Zhou , Gaoyu Zhou , Quanchao Zhuang , Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040
-
[14]
Pengyu Chen , Beibei Chen , Man He , Yuxi Zhou , Lei Lei , Jian Han , Bingsheng Zhou , Ligang Hu , Bin Hu . Nanoplastics and nano-ZnO facilitate Cd accumulation in zebrafish larvae via a distinct pathway: Revelation by LA-ICP-MS imaging. Chinese Chemical Letters, 2025, 36(2): 109908-. doi: 10.1016/j.cclet.2024.109908
-
[15]
Dan Zhou , Liangjin Bao , Haoqi Long , Duo Zhou , Yuwei Xu , Bo Wang , Chuanqin Xia , Liang Xian , Chengbin Zheng . Capillary electrophoresis as sample introduction system for highly sensitive and interference-free determination of 99Tc by ICP-MS. Chinese Chemical Letters, 2025, 36(4): 110093-. doi: 10.1016/j.cclet.2024.110093
-
[16]
Jiying Liu , Zehua Li , Wenjing Zhang , Donghui Wei . Molecular Orbital and Nucleus-Independent Chemical Shift Calculations for C6H6 and B12H122-: A Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 186-192. doi: 10.12461/PKU.DXHX202406085
-
[17]
Wantong Zhang , Zixing Xu , Guofei Dai , Zhijian Li , Chunhui Deng . Removal of Microcystin-LR in lake water sample by hydrophilic mesoporous silica composites under high-throughput MALDI-TOF MS detection platform. Chinese Chemical Letters, 2024, 35(5): 109135-. doi: 10.1016/j.cclet.2023.109135
-
[18]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[19]
Yong-Fang Shi , Sheng-Hua Zhou , Zuju Ma , Xin-Tao Wu , Hua Lin , Qi-Long Zhu . From [Ba3S][GeS4] to [Ba3CO3][MS4] (M = Ge, Sn): Enhancing optical anisotropy in IR birefringent crystals via functional group implantation. Chinese Journal of Structural Chemistry, 2025, 44(1): 100455-100455. doi: 10.1016/j.cjsc.2024.100455
-
[20]
Yubang Li , Xixi Hu , Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(669)
- HTML views(18)